

	UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education	www.tirenepapers.com
CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
COMBINED S	CIENCE	0653/21

Paper 2 (Core)

May/June 2010 1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of 22 printed pages and 2 blank pages.

- Fig. 1.1 shows some of the animals and plants that live in or close to a pond. For Examiner's Use heron pike pond weed water snail not to scale insect bream larva water vole Fig. 1.1 (a) Choose the correct term from the list below for each of the following descriptions. community decomposer ecosystem habitat photosynthesis population all the animals and plants that live in and around the pond all the water voles living in and around the pond all the living things, and their environment, interacting with each other [3]
- 1

(b) The pond weed is a producer.

Water snails and water voles are primary consumers.

The heron and pike are secondary consumers.

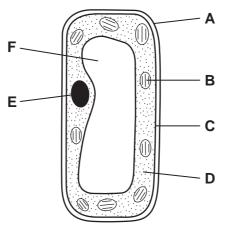
Complete the diagram of a food web that includes only these five organisms.

pond weed

(c) The pond is at the bottom of a sloping field which was ploughed.

During very heavy rain, a lot of soil from the field was washed into the pond.

It made the water cloudy and stopped the light from reaching the leaves of the water plants, so that the plants died.


After a while, the fish and other animals also died.

Give two reasons why the fish and other animals died.

1	
2	
	[2]

[3]

(d) Fig. 1.2 shows a cell from the pond weed.

- (i) Give the letter of the part of the cell that controls what enters and leaves the cell, is the place where photosynthesis happens, contains DNA.
- (ii) Describe **two** ways in which a cell from the heron would look different from the cell in Fig. 1.2.

1	
2	
	[2]

2 (a) Alpha, beta and gamma are three types of radiation emitted during radioactive decay. For Examiner's Use Name a suitable detector for these three types of radiation. [1] (b) State two hazards to the human body from exposure to radiation. 1 _____ 2 [2] (c) (i) Complete the table to compare alpha, beta and gamma radiations. Tick **one** box in each of the two rows in the table. alpha beta gamma most penetrating most ionising [2] (ii) State which type of radiation consists of particles with the greatest mass, consists of electromagnetic waves. [2]

5

3 Aluminium, iron and sodium are metallic elements. Aluminium and iron are widely used, but no useful objects can be made out of metallic sodium.

aluminium alloys are used in aircraft

For

Examiner's Use

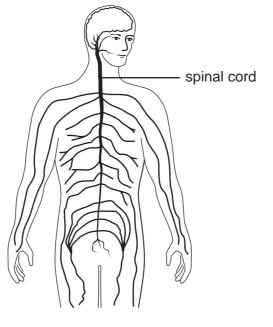
- iron is used to make steel for cars
- (a) (i) State **one** property of a metallic element which is different from a non-metallic element.

[1]

(ii) Use your knowledge of the metals in Group I of the Periodic Table to state **one** reason, other than cost, why no useful objects can be made out of metallic sodium.

[1]

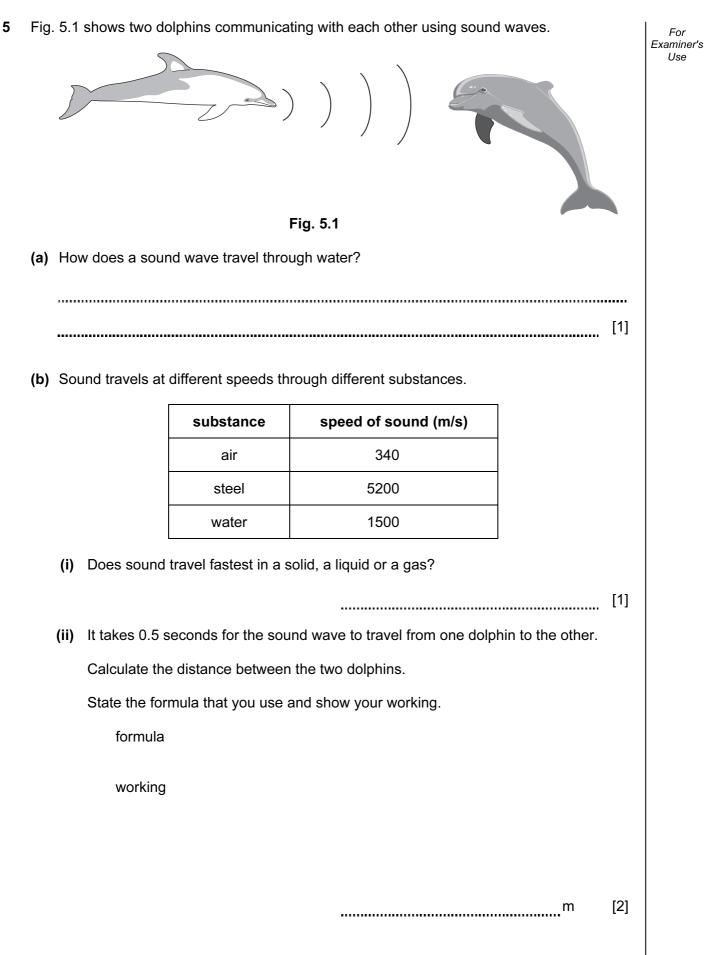
- (b) Aluminium and iron are mainly found as their oxides in rocks.
 - (i) In order to obtain metallic iron, iron oxide is heated strongly in a furnace with carbon monoxide.


One reaction which occurs in the furnace has the symbolic chemical equation shown below.

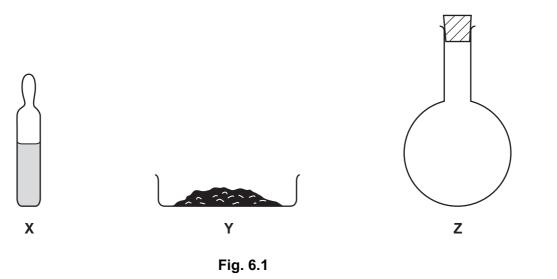
 Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO₂

Explain whether or not this equation is balanced.

(c) Aluminium is produced by electrolysis in which the electrolyte contains molten For aluminium oxide. Examiner's Use Aluminium oxide is a compound of a metal with a non-metal. (i) Name the type of chemical bonding found in aluminium oxide. [1] (ii) State the meaning of the term *electrolyte*. [1] (iii) State the type of energy which must be supplied to decompose molten aluminium oxide. [1] (iv) Name one other metal which is produced industrially by electrolysis. [1]


4 Fig. 4.1 shows part of the human nervous system.

(a) The spinal cord is part of the central nervous system. (i) On Fig. 4.1, label and name **one** other part of the central nervous system. [1] (ii) Complete the sentences below. When a receptor receives a stimulus, signals pass along _____ to the central nervous system. They then pass to ______ which [2] respond to the stimulus. (b) Messages can also be passed from one part of the body to another in the form of hormones. Name the type of gland that produces hormones. [1] (c) A hormone secreted by the pancreas helps to keep blood sugar levels constant. (i) On Fig. 4.1, write the letter **P** to show the position of the pancreas in the body. [1] (ii) Name the hormone that reduces the blood sugar level if it gets too high. [1] (iii) Which body organ removes extra glucose from the blood when the blood sugar level gets too high? [1]


(iv)	Suggest why it is harmful to the body if the blood sugar level falls very low.	For Examiner's Use
	[2]	

(c)	A st	udent is measuring the density of water.		For Examiner's	
	(i)	Name a piece of apparatus he could use to measure the volume of the water.		Use	
			[1]		
	(ii)	Name the piece of apparatus he could use to measure the mass of the water.			
			[1]		
	(iii)	Complete the formula that he would use to calculate the density.			
		density =	[1]		

6 Fig. 6.1 shows samples of three of the elements in Group VII (Group 7) of the Periodic Table.

- (a) The elements in Fig. 6.1 are at the same temperature. One element is a solid, one is a liquid and one is a gas.
 - (i) State which element, **X**, **Y** or **Z**, has the highest melting point.

(ii) Suggest the names of the elements, **X**, **Y** and **Z**.

.....

Χ	
Υ	
Ζ	[2]

- (b) An atom of fluorine has a proton (atomic) number of 9 and a nucleon (mass) number of 19.
 - (i) A diagram of this fluorine atom is shown in Fig. 6.2.

Complete the labelling of the diagram by writing the words **electrons**, **neutrons** and **protons** in the spaces.

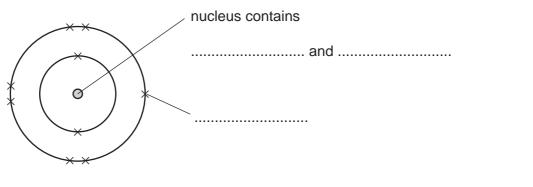


Fig. 6.2

[1]

[1]

(ii) State the number of neutrons in the fluorine atom in Fig. 6.2.
 [1]
 (iii) Explain why the nucleus of an atom has almost the same mass as the whole atom.
 [1]

(c) Many people use solutions which contain chlorine to clean some parts of their homes.

Suggest **one** advantage of using a solution containing chlorine rather than water alone when cleaning homes.

[2]

© UCLES 2010

7 An investigation was carried out in Tamil Nadu, India, into the best conditions for growing tomatoes.

For Examiner's Use

The tomato plants were grown in unheated glasshouses or outside. Netting was used to provide shade in one of the glasshouses.

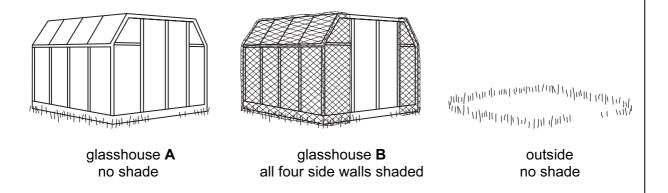


Table 7.1 shows the mean temperature, and the mass of tomatoes produced, in the two glasshouses and outside.

	mean temperature/ºC	mass of tomatoes produced per plant/g
glasshouse A	38	1020
glasshouse B	36	2310
outside	34	1380

(a) Which temperature gave the greatest mass of tomatoes?

°C [1]

(b) Use your knowledge of convection to explain why the air inside the glasshouses stayed warmer than the air outside.

[2]

(c) Tomatoes are a fruit, produced from the fertilised flowers of tomato plants.

Bees are most active in temperatures between 35 °C and 36 °C.

Suggest why the mass of tomatoes produced was greater in glasshouse ${\bf B}$ than in glasshouse ${\bf A}$.

[2]

(d) Suggest **two** factors, other than temperature, that could account for the lower mass of tomatoes produced outside than in glasshouse **B**.

1	
2	[2]

For

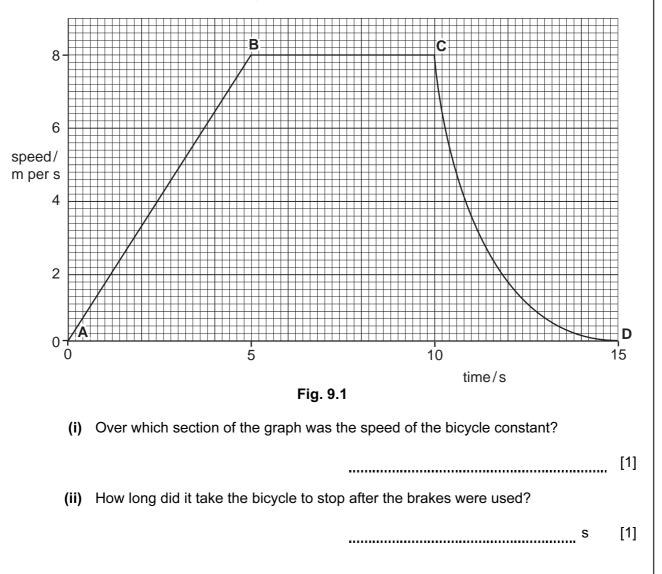
Use

8

(a) (i) The air is a mixture of gases.

- (c) When gasoline burns, the two main gases which are formed are carbon dioxide and water vapour. Both of these compounds are made of non-metallic elements bonded Examiner's together.
 - (i) Name the type of chemical bonding in molecules of carbon dioxide and water.
 - (ii) The displayed (graphical) formula of a water molecule is shown below.

H - O - H


Draw the displayed formula of a carbon dioxide molecule.

[2]

For

Use

9 (a) A rider on his bicycle roll down a constant slope onto level ground. The rider uses the brakes to stop the bicycle. Fig. 9.1 shows the motion of the bicycle.

18

For

Examiner's Use

		For Examiner's Use	
Wh	en the brakes are applied, the average frictional force stopping the bicycle is 250 N.		
Work is done and energy is transferred.			
(i)	Calculate the work done as the bicycle slows down to a stop.		
	State the formula that you use and show your working.		
	formula		
	working		
	J [2]		
(ii)	Identify the energy transfer which takes place.		
	fromenergy toenergy [2]		
	con Wh Wo (i)	 (i) Calculate the work done as the bicycle slows down to a stop. State the formula that you use and show your working. formula working J [2] (ii) Identify the energy transfer which takes place. 	

(c) Fig. 9.2 shows a bicycle with two lamps at the front.

Fig. 9.3 shows the circuit used to power the two lamps.

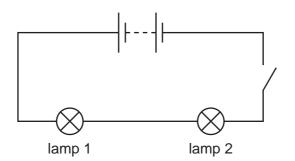
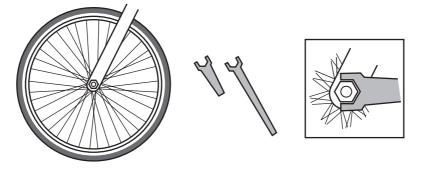


Fig. 9.3

(i) What name is given to this type of circuit?


(ii) The resistance of each lamp in the circuit is 4Ω.
State the combined resistance of the two lamps.

Ω [1]

21

For Examiner's Use

(d) Fig. 9.4 shows a metal nut on the bicycle wheel which is difficult to unscrew.

Explain why a long spanner is better than a short spanner to unscrew the nut.

[2]

BLANK PAGE

BLANK PAGE

	0	4 Helium 2	20 Neon 10 Neon 40 Ar Ar 18	84 Krypton 36	131 Xe 54 54	Radon 86	175 Lutetium 71 Lawrencium 103
	=>		19 9 35.5 Chlorine 17	80 Br Bromine 35	127 I Iodine 53	At Astatine 85	173 Yb 70 Nobelium 102
	N		16 8 ^{Oxygen} 32 32 Sultur 16	79 Selenium 34	128 Te Tellurium 52	Polonium 84	169 Thulium 69 Md Mendelevium 101
	>	>	14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	167 Er Erbium 68 Fm Fermium 100
	≥		6 Carbon 6 Carbon 8 28 28 28 14	73 Ge Germanium 32	119 So Tin	207 Pb Bc B2 Lead	165 Holmium 67 Es Es Es
	≡		11 B Borom 5 27 A1 Auminium 13	70 Ga 31	115 Indium 49	204 T 1 81	162 Dysprosium 66 Cf Californium 98
2112				65 Zn 30 ^{Zinc}	112 Cadmium 48	201 Mercury 80	159 Tarbium 65 BK Berkelium 97
				64 Copper 29	108 Ag ^{Silver}	197 Au 79 Gold	157 Gd Gadolinium 64 C M 96
Group	-			59 Nickel 28	106 Pd Palladium 46	195 Platinum 78	152 Eu Eu 63 Americium 95
				59 CO Cobait 27	103 Rhodium 45	192 I r 77	150 Samarium 62 Plutonium 94
		¹ Hydrogen		56 F C Iron 26	101 Ruthenium 44	190 Osmium 76	Promethium 61 Neptunium 93
				55 Manganese 25	Tc Technetium 43	186 Renium 75	144 Neodymium 60 Cranium 92 Uranium
				52 Chromium 24	96 Molybdenum 42	184 V Tungsten 74	141 Praseodymium 59 Pa Protactinium 91
				51 Vanadium 23	93 Niobium 41	181 Tantalum 73	140 58 58 232 232 140 58 58 58 58 58 58 58 58 58 58 58 58 58
				48 Tranium 22	91 Zr Zirconium 40	178 Hathium 72	uic mass ool ic) number
				45 Scandium 21	89 Yttrium 39	139 Lanthanum 57 227 AC	5 Z 5
	=		9 Berylium 4 24 Magnesium 12	40 Calcium 20	88 Sr rontium 38	137 Baarium 56 226 Raaium 88 Radium	noic
			7 Lithium 23 Sodium	39 Potassium 19	85 Rb Rubidium	Caesium Caesium Francium	°11La

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.