

	UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINAT International General Certificate of Secondary Education	Hunny trienepabers com
CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE	
COMBINED S	CIENCE	0653/23

Paper 2 (Core)

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions. A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

May/June 2010 1 hour 15 minutes

This document consists of 19 printed pages and 1 blank page.

1 (a) Circle the characteristics in the list below that are shared by all living organisms. For Examiner's Use excretion heartbeat photosynthesis sensitivity sight [2] (b) A student peeled a layer of cells from the inside of an onion bulb. She placed them in a drop of water on a microscope slide and covered them with a coverslip. Fig. 3.1 shows what she saw when viewing the cells through a microscope. Fig. 3.1 (i) The cells in Fig. 3.1 are all similar to each other. Give the name for a group of similar cells. [1] (ii) State two ways in which the cells in Fig. 3.1 differ from animal cells. 1 2 [2] (c) Onion cells often contain stores of starch. When a person eats an onion, the starch is digested. Explain why nutrients such as starch must be digested before they can be used by (i) the human body. [2]

(ii)	Outline the roles of each of the following in the digestion of starch.	For
	teeth	Examiner's Use
	enzymes	
	[2]	

4

2	The Periodic Table on page 20 shows the chemical elements in rows (left to right) and	For
	columns (up and down).	Examiner's
		Use

(a) (i) A column of elements in the Periodic Table is called a group.

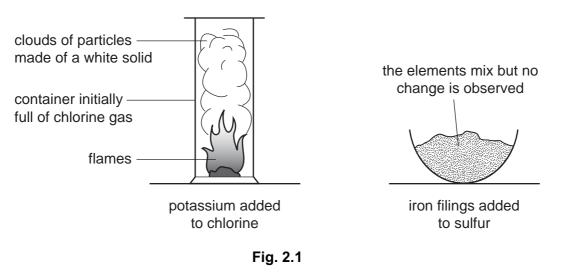
......[1] What is a row of elements called?

(ii) State the chemical symbol of the element which has a proton (atomic) number of 32.

(b) Table 2.1 shows the uses of some elements.

Complete the table by writing the names of elements chosen from the list into the correct boxes.

aluminium	carbon	chlorine	helium
iron	nitrogen	sodium	xenon


Table 2.1

element	use
	used to make food containers because it does not react with food
	used to sterilise drinking water because it kills harmful bacteria
	used in airships because it is an unreactive gas which is much less dense than air

[3]

(c) A teacher placed a small piece of potassium into a container filled with chlorine gas. She also mixed together some iron filings and sulfur powder.

Fig. 2.1 shows what the class observed.

(i) State **two** observations which showed that the elements potassium and chlorine were combining to form a compound.

	1
	2
	[2]
(ii)	Suggest the word chemical equation for the reaction between potassium and chlorine.
	[1]
(iii)	Iron sulfide is a compound made of the elements iron and sulfur.
	Using this example, describe two ways in which a mixture of two elements differs from a compound of the elements.
	1
	2
	[2]

5

For Examiner's Use **3 (a)** Fig. 3.1 shows an astronaut on a space walk. His space suit is designed to stop dangerous electromagnetic radiation from the Sun reaching the astronaut's body.

For Examiner's Use

(i) Name two types of electromagnetic radiation that can harm the body.

		1	
		2	[2]
	(ii)	State one way in which electromagnetic radiation can harm the body.	
			[1]
(b)	a m	o astronauts are in a rocket being launched to the Moon. One of the astronauts h nass of 96 kg. The gravitational field strength on the Moon is about one sixth of th Earth.	
	Sta	te the difference, if any, between	
	(i)	the mass of the astronaut on the Earth and on the Moon,	
			[1]
	(ii)	the weight of the astronaut on the Earth and on the Moon.	
			[1]

(c) The astronauts land on the Moon, which has no atmosphere. They use radio signals to talk to each other. Examiner's Explain why sound waves need a medium, such as air, to travel through. [2] (d) A rock on the moon weighs 6 N. The astronaut lifts it up by 2 metres. Calculate the work done on the rock. State the formula that you use and show your working. formula working _____J [2]

For

4 (a) A student investigated the conditions needed for the germination of mustard seeds.

Fig. 4.1 shows the apparatus at the start of his experiment.

Tubes **A** to **E** were placed in the laboratory at room temperature. Tube **E** was placed in a freezer at -4 °C.

For Examiner's Use

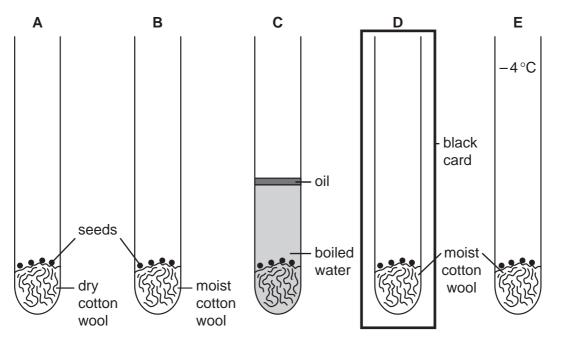


Fig. 4.1

(i) Which **one** of these factors should the student have kept the same for all of the tubes? Circle the correct answer.

(ii) After three days, the seeds in tubes **B** and **D** had germinated.

The seeds in all the other tubes had not germinated.

Use these results to deduce the conditions needed for the germination of mustard seeds.

[3]

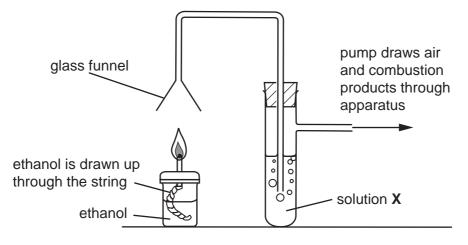
8

9

© UCLES 2010

[Turn over

For

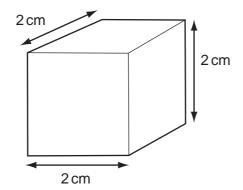

Examiner's Use

5 Some fuels are listed below.

Sor	ne fu	uels are listed b	elow.			For Examiner's
		animal dung	coal	methane	wood	Use
(a)	(i)	State one fuel	from the list which i	s an example of a fos	sil fuel.	
		Explain your a	inswer.			
		example of a f	fossil fuel			
		explanation				
						[2]
	(ii)	The chemical below.	formulae of some si	ubstances which can	be used as fuels are sh	own
		C₂H ₆ O	H ₂	CO C ₂ H	l ₂ C	
		Explain which	one of these formul	ae represents one mo	plecule of a hydrocarbor	л.
						[2]
(b)	At a	an oil refinery, ι	useful products are s	eparated from petrole	eum (crude oil).	
	Cor	nplete the sent	ences by choosing t	erms from the list belo	DW.	
	b	oiling points	colours	catalytic crack	ting filtration	
		filtered	fractional distillat	ion heated	stirred	
	The	e process used	to separate petroleu	ım into useful product	s is called	
	In t	his process, pe	troleum is			·
	Diff	erent products	separate because th	ney have different		
						[3]

(c) A student suggested that when the liquid fuel ethanol is burned, carbon dioxide gas should be produced. Examiner's

Fig. 5.1 shows apparatus which he used to find out if this was true.

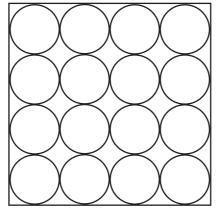

(i) Solution X is used to test for carbon dioxide.

Name solution X, and describe what would be observed if the combustion of ethanol does produce carbon dioxide.

solution X	
observation	
	[2]
Explain why the combustion of ethanol is an example of an oxidation reaction.	
	[1]
	observation

For

6 Fig. 6.1 shows a cube.


(a) (i) Name a suitable piece of apparatus for measuring the length of the cube.

[1]
(ii) Calculate the volume of the cube. ______ cm³ [1]
(iii) The mass of the cube is 21.6 g.
Calculate the density of the cube.
State the formula that you use and show your working.
formula
working

_____g/cm³ [2]

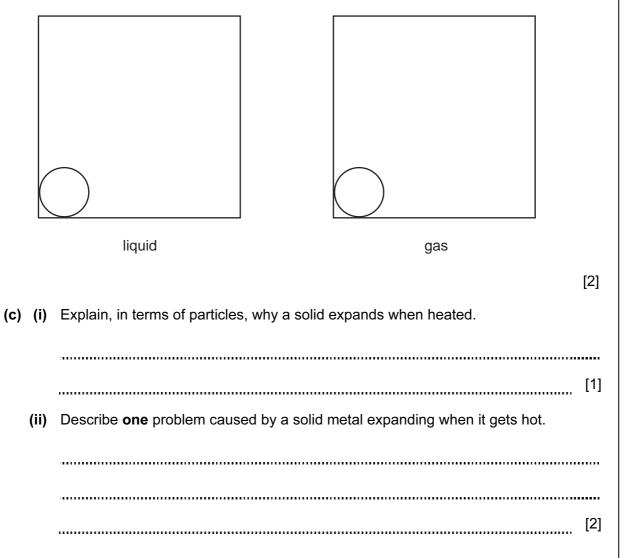
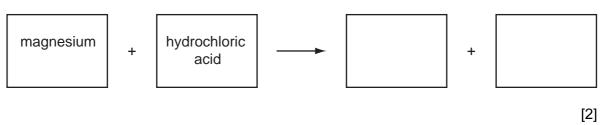
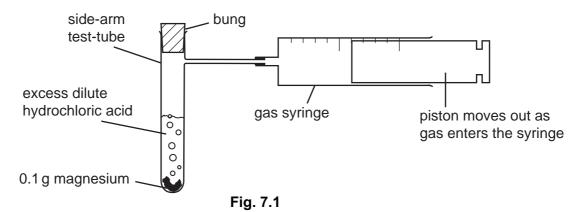

For Examiner's Use (b) The solid cube is made up of very small particles.

Fig. 6.2 shows their arrangement.

Complete the diagrams below to show the arrangement of particles in a liquid and in a gas.


For Examiner's Use

© UCLES 2010


7 When magnesium metal reacts with dilute hydrochloric acid, a soluble salt and a gas are produced.

For Examiner's Use

(a) Complete the **word** chemical equation for the reaction between magnesium and hydrochloric acid.

(b) A student used the apparatus in Fig. 7.1 to investigate the rate of this reaction.

The student dropped the magnesium into the acid contained in the side-arm test-tube and put in the bung.

A stopwatch was used to time how long it took for the gas syringe to fill with gas.

The student carried out two experiments and the results are shown in Table 7.1.

Table 7.1

experiment	time taken to collect 100 cm ³ of gas/seconds
1	45
2	31

(i) Explain how the results show that the rate of reaction in experiment **2** was higher than that in experiment **1**.

[1]

(ii) Suggest two ways in which the rate of reaction between magnesium and dilute hydrochloric acid could be increased. Examiner's 1 2 (iii) Sodium is an alkali metal in Group 1 of the Periodic Table. Explain why the student must not attempt the experiment shown in Fig. 7.1 using sodium instead of magnesium. [2]

For

- 8 (a) A torch (flash light) contains two cells providing a total voltage of 3.0 V across the lamp. When the torch is lit, the current flowing through the lamp is 0.3 A.
 - (i) Calculate the resistance of the lamp.

State the formula that you use, show your working, and state the units of resistance.

formula

working

[3]

For

Examiner's Use

(ii) To measure the current through the lamp and the voltage across the lamp, the student set up the circuit in Fig. 8.1.

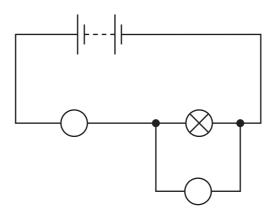


Fig. 8.1

Write the letters A and V in the two circles on the diagram to show the correct positions of the ammeter (A) and voltmeter (V). [1]

(b) Complete the sentences below to describe the energy changes which take place when the torch is used.

17

For Examiner's Use

Choose from the words given.

chemical	electrical	heat	kinetic
light	nuclear	potential	sound
Energy is stored in the c	ells as	ene	ergy. This is changed
into		energy which passes the	nrough the lamp. The
useful energy output from	m the lamp is		energy, but much
energy is wasted as		energy.	[4]

9 Fig. 9.1 shows a section through a human heart seen from the front.

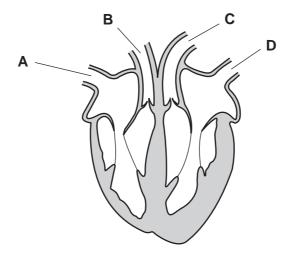


Fig. 9.1

(a) (i) The walls of the heart are made of cardiac muscle. Describe the function of the cardiac muscle in the heart. [2] (ii) State the name of the blood vessels that supply the cardiac muscle with oxygen.[1] (iii) Give the letters of the two labelled blood vessels in Fig. 9.1 that contain oxygenated blood. and [1] (b) Plants also have transport systems in which liquids flow through vessels. However, they do not have a heart. Instead, transpiration pulls water up through the plant. (i) Explain what is meant by the term *transpiration*. [2] (ii) Name the vessels through which water travels up a plant. [1]

For Examiner's Use

BLANK PAGE

	0	4	, Helium		20	Neon	10	40	Ar Argon 18	84	Kr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86			ļ	c/I	7		Ļ	Lawrencium
	H>				19	Fluorine	6	35.5	C1 Chlorine	80	Br	Bromine 35	127	Ι	lodine 53		At	Astatine 85				۲	Ytterbium 70	2	No	Nobelium
	>				9 (O _{xygen}	8	32	Sultur 16	62	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84				Far F			Md	Mendelevium
	>				14	Nitrogen	7	31	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	<u>B</u>	Bismuth 83				191 1	Erbium	8	Еm	Fermium
	≥				5 (Carbon	6	28	Silicon	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82				601 T	Holmium 67	5	Es	Einsteinium
	≡				⊊ 0	Boron a	5	27	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	11	Thallium 81				791	Dysprosium	3	Ç	Californium
	Group								Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80			-	AGL F	Terbium	2	Bk	Berkelium		
									64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			ļ	ردا ۱	Gadolinium 64	5	Cm	Curium	
dnc										59	Ï	Nickel 28	106	Pd	Palladium 46	195	F	Platinum 78				ZGL	Europium 63	2	Am	Americium
Gre										59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77			-		Samarium 62	70	Pu	E
		- 1	Hydrogen	_						56	Fe	lron 26	101	Ru	Ruthenium 44	190	os	Osmium 76				80	F		Np	Neptunium
										55	Mn	Manganese 25		ц	Technetium 43	186	Re	Rhenium 75					žg			Uranium
										52	ې	Chromium 4	96	Мо	Molybdenum 42	184	≥	Tungsten 4				1 41 0	Praseodymium 50		Ра	Protactinium
											0	Chroi 24		2	Moly 42			74 T					Prase	3		
											>	Vanadium Chroi 23 24			Niobium Moly 41 42	181		Tantalum 73 74				0 2		232	Ч	_
										51		nadium 2,	93	ЧN	Niobium 41		Та	Hafnium Tantalum 73					Derium	232		Thorium
										51	>	itanium Vanadium 2,	93	ЧN	liobium	178	Hf Ta	Hafnium Tantalum 7.	227	Actinium +		0 C	Cerium 58	232		Thorium
	=				о С	Berylium	4	24	MG Magnesum 12	48 51	Sc Ti V	candium Titanium Vanadium 2.	89 91 93	ЧN	Yttrium Zirconium Nicbium 40	139 178	La Hf Ta	* Hafnium Tantalum 73	226 227	Actinium		SS	Derium	232	X X = atomic symbol Th	Thorium

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.