
|                                                                                                                             | Candidate Number                                                                                                                         | Name                                |                                 |                                                 | W. File        |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------------------------------------------|----------------|
|                                                                                                                             | SITY OF CAMBRIDGE                                                                                                                        |                                     |                                 | AMINATION                                       | www.trenepaper |
| COMBINED                                                                                                                    | SCIENCE                                                                                                                                  |                                     |                                 | 0653                                            | 3/02           |
| Paper 2                                                                                                                     |                                                                                                                                          |                                     | Octobe                          | r/November                                      | 2005           |
|                                                                                                                             |                                                                                                                                          |                                     |                                 |                                                 |                |
|                                                                                                                             | swer on the Question Pape<br>laterials are required.                                                                                     | er.                                 | 1                               | hour 15 mir                                     | nutes          |
| /rite in dark blue or bla<br>ou may use a soft per<br>o not use staples, pap                                                | JCTIONS FIRST<br>ber, candidate number and<br>ack pen in the spaces prov<br>ncil for any diagrams, grap<br>per clips, highlighters, glue | /ided on the Qu<br>hs, tables or ro | uestion Paper.<br>bugh working. | and in.                                         |                |
|                                                                                                                             | s given in brackets [ ] at th<br>Table is printed on page 2                                                                              |                                     | question or pa                  | rt question.                                    |                |
| he number of marks is                                                                                                       |                                                                                                                                          |                                     | question or pa                  | For Exa                                         | aminer's Use   |
| he number of marks is                                                                                                       |                                                                                                                                          |                                     | question or pa                  | For Exa<br>1                                    | aminer's Use   |
| he number of marks is                                                                                                       |                                                                                                                                          |                                     | question or pa                  | For Exa<br>1<br>2                               | aminer's Use   |
| he number of marks is                                                                                                       |                                                                                                                                          |                                     | question or pa                  | For Exa<br>1<br>2<br>3                          | aminer's Use   |
| he number of marks is                                                                                                       |                                                                                                                                          |                                     | question or pa                  | For Exa<br>1<br>2<br>3<br>4                     | aminer's Use   |
| he number of marks is<br>copy of the Periodic                                                                               | Table is printed on page 2                                                                                                               |                                     | question or pa                  | For Exa<br>1<br>2<br>3<br>4<br>5                | aminer's Use   |
| he number of marks is                                                                                                       | Table is printed on page 24                                                                                                              |                                     | question or pa                  | For Exa<br>1<br>2<br>3<br>4<br>5<br>6           | aminer's Use   |
| he number of marks is<br>copy of the Periodic<br>you have been giver<br>etails. If any detail<br>nissing, please fill in yo | Table is printed on page 24                                                                                                              |                                     | question or pa                  | For Exa<br>1<br>2<br>3<br>4<br>5<br>6<br>7      | aminer's Use   |
| f you have been giver<br>letails. If any detail<br>nissing, please fill in yo<br>he space given at the                      | Table is printed on page 24<br>n a label, look at the<br>s are incorrect or<br>our correct details in<br>top of this page.               |                                     | question or pa                  | For Exa<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | aminer's Use   |
| he number of marks is<br>copy of the Periodic<br>you have been giver<br>etails. If any detail<br>hissing, please fill in yo | Table is printed on page 24<br>n a label, look at the<br>s are incorrect or<br>our correct details in<br>top of this page.               |                                     | question or pa                  | For Exa<br>1<br>2<br>3<br>4<br>5<br>6<br>7      | aminer's Use   |

IB05 11\_0653\_02/3RP © UCLES 2005 UNIVERSITY of CAMBRIDGE International Examinations

[1]

 A student was asked to prepare some copper sulphate crystals. The diagrams, P, Q and R, in Fig. 1.1 show three important steps in the method the student used.





(a) (i) Complete the table, using the letters **P**, **Q** and **R**, to show the order in which these processes should be carried out to produce copper sulphate crystals.

| first  |  |
|--------|--|
| second |  |
| third  |  |

(ii) Suggest how the student made certain that all of the sulphuric acid had reacted.

(iii) State the chemical formula of sulphuric acid.
 [1]
 (iv) State and explain briefly which one of the elements in copper sulphate solution gives the solution its blue colour.
 [2]

(b) The student then wrote a short plan of an experiment to produce some metallic copper from the copper sulphate solution that she had made.

Fill in the spaces in her plan using words chosen from the list.

| anode                                                  | cathode      | electrodes          | electrolysis                  |  |  |  |
|--------------------------------------------------------|--------------|---------------------|-------------------------------|--|--|--|
| electrolyte                                            | neutralisati | ion                 | thermal decomposition         |  |  |  |
|                                                        |              |                     |                               |  |  |  |
| The method I will use is called In this method, two    |              |                     |                               |  |  |  |
|                                                        | mus          | st be dipped into t | the copper sulphate solution. |  |  |  |
| Copper metal will form on the surface of the In this   |              |                     |                               |  |  |  |
| experiment, copper sulphate solution is called the [4] |              |                     |                               |  |  |  |

| 2 | (a) | A ra | adioactive source emits a                         | alpha radiati | ition.                                                                       |    |
|---|-----|------|---------------------------------------------------|---------------|------------------------------------------------------------------------------|----|
|   |     | Nar  | ne the apparatus you wo                           | ould use to o | detect the radiation emitted.                                                |    |
|   |     |      |                                                   |               | [                                                                            | 1] |
|   |     |      |                                                   |               |                                                                              |    |
|   | (b) | Alp  | ha radiation is described                         | as ionising   | g radiation.                                                                 |    |
|   |     | (i)  | Explain the meaning of                            | the term ior  | onising radiation.                                                           |    |
|   |     |      |                                                   |               |                                                                              |    |
|   |     |      |                                                   |               | [                                                                            | 1] |
|   |     | (ii) | Explain why alpha radia                           | ation can be  | e harmful to living organisms.                                               |    |
|   |     |      | ,                                                 |               |                                                                              |    |
|   |     |      |                                                   |               | [                                                                            | 1] |
|   |     |      |                                                   |               |                                                                              |    |
|   | (c) |      | ha, beta and gamma rad<br>w lines between the box |               | ve different properties.<br>o link each type of radiation to its properties. |    |
|   |     |      | radiation                                         |               | properties                                                                   |    |
|   |     |      |                                                   |               |                                                                              |    |
|   |     |      |                                                   |               | no charge                                                                    |    |
|   |     |      | alpha                                             |               | partly stopped by 2 cm of lead                                               |    |
|   |     |      |                                                   |               | negative charge                                                              |    |
|   |     |      | beta                                              |               | <ul> <li>stopped by 2 cm of lead</li> </ul>                                  |    |
|   |     |      | gamma                                             |               |                                                                              |    |
|   |     |      | g                                                 |               | <ul><li> positive charge</li><li> stopped by 6 cm of air</li></ul>           |    |
|   |     |      |                                                   |               | []                                                                           | 2] |
|   |     |      |                                                   |               |                                                                              |    |

- (d) Electricity can be generated by nuclear fission.
  - (i) Describe what happens to an atom during nuclear fission.

[2]

(ii) Energy from nuclear fission can be converted into electrical energy. The first stage of this is the conversion of nuclear energy into heat energy.

Naming the equipment involved describe how the heat energy is then converted into electrical energy.

3 Racing cyclists train hard to be good at their sport, and eat a carefully planned diet.



(a) A cyclist is a living organism, but a bicycle is not.

State two characteristic activities of a living organism such as a cyclist, that are **not** shared by a bicycle.

| 1. |         |
|----|---------|
| 2. | <br>[2] |

(b) Professional cyclists eat a diet rich in carbohydrates and proteins.

State how each of these types of nutrients helps a cyclist to be good at this sport.

carbohydrates

.....

proteins

[2]

(c) Some professional cyclists who have taken part in international competition have carried out a procedure called blood doping. Anyone who is found to have done this is now disqualified.

Blood doping involves putting extra red blood cells into the cyclist's blood.

Table 3.1 shows how this affects the cyclist's blood and ability to exercise.

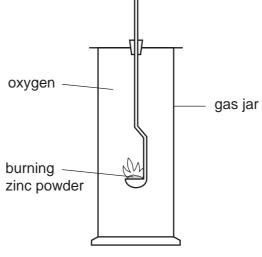
| Table 3.1                                                                      |                     |                    |  |
|--------------------------------------------------------------------------------|---------------------|--------------------|--|
|                                                                                | before blood doping | after blood doping |  |
| concentration of<br>haemoglobin in the blood /<br>g per cm <sup>3</sup>        | 14                  | 18                 |  |
| length of time the cyclist<br>could run on a treadmill at<br>top speed/seconds | 793                 | 918                |  |

(i) What effect does blood doping have on the concentration of haemoglobin in the blood?

| ſ1    | 1   |  |
|-------|-----|--|
| 11    | - L |  |
| <br>- | -   |  |

(ii) Explain why blood doping has this effect.

[2]


(iii) Using the information in Table 3.1, and your own knowledge, suggest how blood doping can help a cyclist to win a race.

- 4 The chemical symbols for two elements are shown below.
  - <sup>65</sup><sub>30</sub> Zn <sup>16</sup><sub>8</sub> O
  - (a) Complete the table which refers to one atom of each element.

| element | number of protons | number of neutrons | number of electrons |
|---------|-------------------|--------------------|---------------------|
| zinc    |                   |                    |                     |
| oxygen  |                   |                    |                     |

[3]

(b) The apparatus shown in Fig. 4.1 was used to burn zinc powder in oxygen.





When the reaction had finished, a white solid, X, remained in the gas jar.

| (i)   | Name the white solid <b>X</b> .                                                                           |   |
|-------|-----------------------------------------------------------------------------------------------------------|---|
|       | [1                                                                                                        | ] |
| (ii)  | Name the type of chemical reaction in which ${f X}$ is formed.                                            |   |
|       | [1                                                                                                        | ] |
| (iii) | Explain why the mass of product ${f X}$ is greater than the original mass of zinc used in the experiment. | n |
|       |                                                                                                           |   |
|       |                                                                                                           |   |
|       | [1                                                                                                        | ] |

| (c) | Some types of steel fence are galvanised in order to prevent the steel from rusting.                                  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | (i) Explain briefly what is meant by the term <i>galvanised</i> .                                                     |  |  |  |  |
|     |                                                                                                                       |  |  |  |  |
|     | (ii) Galvanising protects the steel from reacting with substances that cause rusting<br>Name two of these substances. |  |  |  |  |

| 1. | <br>    |
|----|---------|
| 2. | <br>[2] |

**5** Fig. 5.1 shows a caterpillar crawling across a large leaf. The caterpillar is moving at a speed of 1 mm/s.

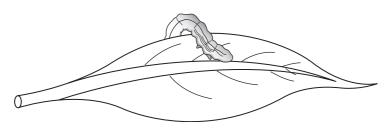



Fig. 5.1

A student measured this speed by measuring the distance covered by the caterpillar during one minute.

(a) State a suitable piece of apparatus to measure

| (i)  | the distance moved, | <br>[1] |
|------|---------------------|---------|
| (ii) | the time taken.     | <br>[1] |

(b) If the caterpillar is moving at a constant speed, calculate how far the caterpillar will travel in one minute.

Show your working and state the formula that you use.

formula used

working

..... mm [2]

For Examiner's Use

(c) Fig. 5.2 is a graph showing the speed of the caterpillar measured over 300 seconds.

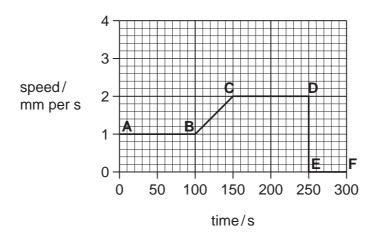



Fig. 5.2

(i) How can you tell that the caterpillar is moving at a constant speed between A and B?
[1]
(ii) After how many seconds does the caterpillar stop moving?
[1]
(iii) Between which times is the caterpillar accelerating? Explain your answer.
[2]

**6** (a) Fig. 6.1 shows a section through a leaf.

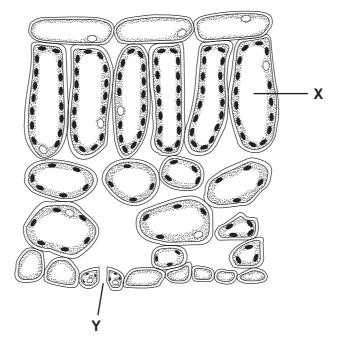
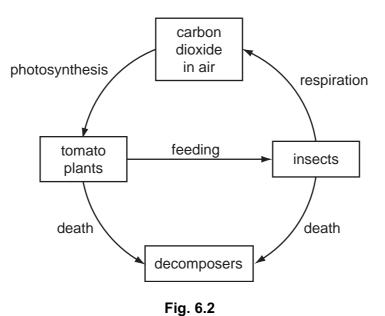
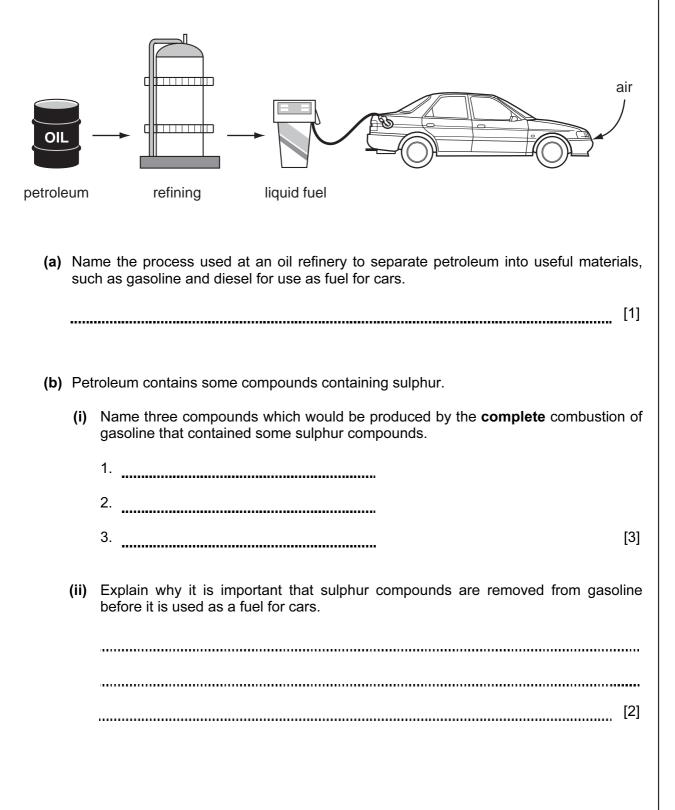




Fig. 6.1

(i) On Fig. 6.1 draw an arrow to show how carbon dioxide travels to cell X. [1]
(ii) Describe and explain one way in which cell X is adapted for photosynthesis.
[2]
(iii) In hot, dry weather the pore labelled Y closes.
Suggest how this helps the plant to survive.
[2]


For Examiner's Use

(b) The leaves of tomato plants are sometimes eaten by insect pests. Fig. 6.2 shows some of the ways in which the tomato plants and insects both contribute to the carbon cycle.



- (i) On the diagram, draw and label **two** more arrows to show how carbon dioxide is returned to the air. [2]
- (ii) Using the information on Fig. 6.2, explain why destroying the plants on large areas of the Earth could contribute to global warming.

7 Petroleum (crude oil) is obtained from the Earth's crust, and is the raw material for liquid fuel used in cars.



(c) Fig. 7.1 shows a catalytic converter on a car. This device contains a metal catalyst. When exhaust gases from the car's engine pass through the converter, chemical reactions take place which reduce the amount of poisonous gases released into the air.

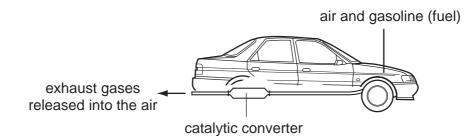



Fig. 7.1

(i) Explain the meaning of the term catalyst.

[2]

(ii) Suggest from which section of the Periodic Table the elements used to make the catalyst should be chosen.

[1]

8 (a) A student set up the circuit shown in Fig. 8.1.

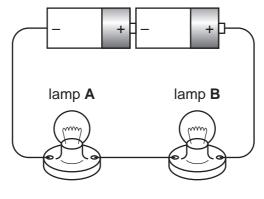



Fig. 8.1

Redraw this diagram as a circuit diagram using the correct electrical symbols.

- (b) The student noticed that neither lamp **A** nor lamp **B** lit up. She found nothing wrong with lamp **A**, but the filament in lamp **B** was broken.
  - (i) Explain why lamp A did not light up.

when lit.

[1]

(ii) She replaced lamp **B** with a new lamp. The resistance of each lamp was 4 ohms

Calculate the combined resistance of both lamps in the working circuit.

\_\_\_\_\_ ohms [1]

| 17             |                                                                                                                                                    |  |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <b>(c)</b> Ele | c) Electricity can be generated by many methods, including the use of solar energy.                                                                |  |  |  |  |  |
| (i)            | State one non-renewable fuel that is used to generate electricity.                                                                                 |  |  |  |  |  |
|                | [1]                                                                                                                                                |  |  |  |  |  |
| (ii)           | Name the process that produces energy within the Sun.                                                                                              |  |  |  |  |  |
|                | [1]                                                                                                                                                |  |  |  |  |  |
| (iii)          | Energy is transferred from the Sun to the Earth by radiation.<br>Explain why energy cannot be transferred from the Sun to the Earth by conduction. |  |  |  |  |  |
|                |                                                                                                                                                    |  |  |  |  |  |
|                | [1]                                                                                                                                                |  |  |  |  |  |

9 (a) Fig. 9.1 shows the male reproductive system.

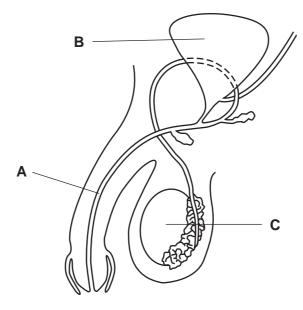



Fig. 9.1

|     | (i)  | Name the part labelled <b>A</b> .                                             |       |
|-----|------|-------------------------------------------------------------------------------|-------|
|     |      | Α                                                                             | [1]   |
|     | (ii) | State the functions of parts <b>B</b> and <b>C</b> .                          |       |
|     |      | В                                                                             |       |
|     |      | с                                                                             | [2]   |
| (b) | Sor  | ne organisms are able to reproduce both asexually and sexually.               |       |
|     | (i)  | Describe the differences between asexual reproduction and sexual reproduction |       |
|     |      |                                                                               |       |
|     |      |                                                                               | ••••• |
|     |      |                                                                               | [2]   |
|     | (ii) | Describe <b>one</b> way in which a plant reproduces asexually.                |       |
|     |      |                                                                               |       |
|     |      |                                                                               |       |
|     |      |                                                                               | [2]   |

## **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

| DATA SHEET<br>he Periodic Table of the El |
|-------------------------------------------|
|-------------------------------------------|

|       |     |                  |                                                           |                                    | 20                                  |                                              | ſ                           |                                                    | 11                                                                          |
|-------|-----|------------------|-----------------------------------------------------------|------------------------------------|-------------------------------------|----------------------------------------------|-----------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|
| Group | 0   | 4<br>Helium<br>2 | 20<br>Neon<br>10<br>Af<br>Argon                           | 84<br><b>Kr</b><br>Mr<br>36        | 131<br><b>Xe</b><br>54              | Radon<br>86                                  |                             | 175<br><b>Lu</b><br>Lutetium<br>71                 | Lr<br>Lawrencium<br>103                                                     |
|       | ١١٨ |                  | 19<br>Fluorine<br>35.5<br><b>C1</b>                       | 80<br><b>Br</b><br>Bromine<br>35   | 127<br>I<br>lodine<br>53            | At<br>Astatine<br>85                         |                             | 173<br><b>Yb</b><br>Ytterbium<br>70                | Nobelium<br>102                                                             |
|       | >   |                  | 16<br>8 Oxygen<br>32<br>32<br>Suphur<br>16                | 79<br>Selenium<br>34               | 128<br><b>Te</b><br>Tellurium<br>52 | PO<br>Polonium<br>84                         |                             | 169<br><b>Tm</b><br>Thulium<br>69                  | Mendelevium<br>101                                                          |
|       | >   |                  | 14<br><b>N</b> itrogen<br>31<br>Phosphorus<br>15          | 75<br><b>AS</b><br>Arsenic<br>33   | 122<br><b>Sb</b><br>Antimony<br>51  | 209<br><b>Bi</b><br>Bismuth<br>83            |                             | 167<br><b>Er</b><br>Erbium<br>68                   | Farmium<br>100                                                              |
|       | 2   |                  | 12<br>Carbon<br>6<br>28<br>28<br>Silicon                  | 73<br><b>Ge</b><br>Germanium<br>32 | 119<br><b>Sn</b><br>50              | 207<br>Pb<br>Lead<br>82                      |                             | 165<br><b>HO</b><br>Holmium<br>67                  | Einsteinium<br>99                                                           |
|       | ≡   |                  | 11<br>B<br>Boron<br>5<br>27<br>Aluminium<br>13            | 70<br><b>Gal</b><br>31             | 115<br><b>In</b><br>Indium<br>49    | 204<br><b>T 1</b><br>Thallium<br>81          |                             | 162<br>Dy<br>Dysprosium<br>66                      | <b>Cf</b><br>Californium<br>98                                              |
|       |     |                  |                                                           | 65<br><b>Zi</b> nc<br>30           | 112<br>Cadmium<br>48                | 201<br><b>Hg</b><br><sup>Mercury</sup><br>80 |                             | 159<br><b>Tb</b><br><sup>Terbium</sup><br>65       | BK<br>Berkelium<br>97                                                       |
|       |     |                  |                                                           | 64<br>Copper<br>29                 | 108<br><b>Ag</b><br>Silver          | 197<br><b>Au</b><br>Gold<br>79               |                             | 157<br><b>Gd</b><br>Gadolinium<br>64               | 96<br>Curium                                                                |
|       |     |                  |                                                           | 59<br>Nickel<br>28                 | 106<br>Pd<br>Palladium<br>46        | 195<br>Pt<br>Platinum<br>78                  |                             | 152<br><b>Eu</b><br>63                             | Americium<br>95                                                             |
|       |     |                  |                                                           | 59<br><b>Co</b><br>27              | 103<br>Rhodium<br>45                | 192<br>Ir<br>Iridium<br>77                   |                             | 150<br><b>Sm</b><br>Samarium<br>62                 | Putenium<br>94                                                              |
|       |     | Hydrogen 1       |                                                           | 56<br>Iron<br>26                   | 101<br><b>Ru</b><br>Ruthenium<br>44 | 190<br><b>OS</b><br>Osmium<br>76             |                             | Promethium<br>61                                   | Neptunium<br>93                                                             |
|       |     |                  |                                                           | 55<br>Mn<br>Manganese<br>25        | Tc<br>Technetium<br>43              | 186<br><b>Re</b><br>Rhenium<br>75            |                             | 144<br>Neodymium<br>60                             | 238<br>Uranium<br>92                                                        |
|       |     |                  |                                                           | 52<br><b>Chromium</b><br>24        | 96<br><b>Molybdenum</b><br>42       | 184<br><b>V</b><br>Tungsten<br>74            |                             | 141<br><b>Pr</b><br>Praseodymium<br>59             | Pa<br>Protactinium<br>91                                                    |
|       |     |                  |                                                           | 51 <b>V</b> anadium<br>23          | 93<br>Niobium<br>41                 | 181<br><b>Ta</b><br>Tantalum<br>73           |                             | 140<br><b>Ce</b><br>Cerium<br>58                   | 232<br><b>71</b><br>100<br>100<br>100                                       |
|       |     |                  |                                                           | 48<br>Titanium<br>22               | 91<br>Zr<br>Zirconium<br>40         | 178<br>Hafnium<br>72                         |                             |                                                    | mic mass<br>Ibol<br>mic) number                                             |
|       |     |                  |                                                           | 45<br><b>SC</b><br>Scandium<br>21  | 89<br>Vttrium<br>39                 | 139<br>La<br>Lanthanum<br>57 *               | 227<br>Actinium<br>89       | d series<br>series                                 | a = relative atomic mass<br>X = atomic symbol<br>b = proton (atomic) number |
|       | =   |                  | 9<br>Berylium<br>4<br>24<br>Magnesium<br>12               | 40<br>Calcium<br>20                | 88<br><b>St</b><br>Strontium<br>38  | 137<br><b>Ba</b><br>Barium<br>56             | 226<br>Radium<br>88         | *58-71 Lanthanoid series<br>90-103 Actinoid series | • × ∞                                                                       |
|       | _   |                  | 7<br>Lithium<br>3<br>23<br>23<br>23<br>23<br>11<br>Sodium | 39<br>Potassium<br>19              | 85<br><b>Rb</b><br>Rubidium<br>37   | 133<br>CS<br>Caesium<br>55                   | <b>Fr</b><br>Francium<br>87 | *58-71 L<br>90-103                                 | ه<br>۲ey                                                                    |

The volume of one mole of any gas is  $24 \, \text{dm}^3$  at room temperature and pressure (r.t.p.).