

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SC	IENCE		065	3/05
CENTRE NUMBER		CANDIDATE NUMBER		
CANDIDATE NAME				

Paper 5 Practical Test

October/November 2007

1 hour 30 minutes

Candidates answer on the Question Paper.

Additional Materials:

As listed in Confidential Instructions.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Chemistry practical notes for this paper are printed on page 8.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 8 printed pages.

For Examiner's Use

1	(a)		e beaker labelled A contains raisins that haution overnight. Beaker B contains unsoaked	<u> </u>
		(i)	Remove one raisin from each beaker. Pla raisins in the spaces below.	ace them on the white tile. Draw the
			raisin A	raisin B [2]
		(ii)	Compare the appearance of the raisins. Des size of raisin A while it was in the solution. S	• • • • • • • • • • • • • • • • • • • •
	(b)	exc	e kidneys of animals can regulate the level creting urine. Healthy urine does not contain oride ions.	
			e four solutions, D , E , F and G have been memically similar to urine samples from different	
		The	e four samples are	
		•	urine containing reducing sugar, from a diab	etic patient,
		•	urine containing protein, from a patient with	•
		•	urine from a healthy person,	

© UCLES 2007 0653/05/O/N/07

a sample that is not genuine urine (fake sample).

You are going to identify the samples. For each test use 2 cm depth of sample in a test-tube.

For Examiner's Use

- (i) Test each solution with Benedict's reagent. Record the colour of each sample after testing, in Fig. 1.1.
- (ii) Test each solution with biuret reagent. Record the colour of each sample after testing in Fig. 1.1.

test on urine	sample D	sample E	sample F	sample G
Benedict's test				
protein test				

	Fig. 1.1	[4]
(iii)	Use the results from Fig. 1.1 to identify the sample from the patient with	
	diabetes,	
	kidney failure.	[2]

2 You are going to find out how the current through a piece of wire varies with its length. The circuit has been set up for you and is shown in Fig. 2.1.

For Examiner's Use

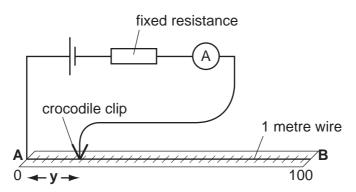


Fig. 2.1

(a) S, the value of the resistance of one metre of the wire AB, has been given to you. State this value.

- (b) Using the crocodile clip, complete the circuit by touching the wire at the 10.0 cm (y = 10 cm) mark on the ruler. Read the current I and record this value in Fig. 2.2.
- (c) Repeat this measurement of current for the four further values of **y** shown in Fig. 2.2. Record your measurements in Fig. 2.2.

length y /cm	resistance R /ohms	current I/amps	current x resistance IR/volts
10.0			
30.0			
50.0			
70.0			
90.0			

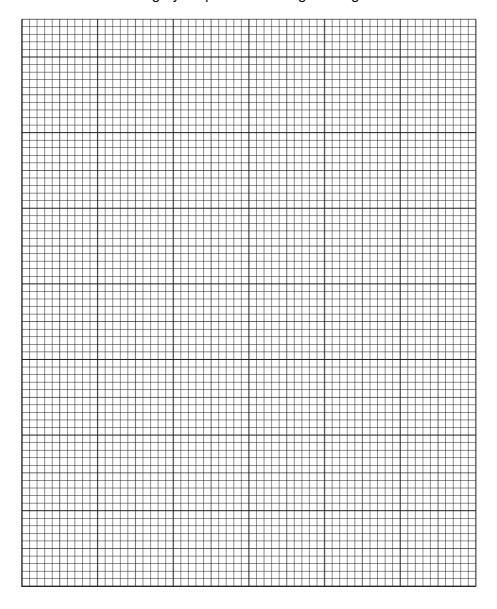
(d) (i) Calculate R the resistance of the wire for each length of y using the formula

$$R = \frac{\mathbf{S} \times \mathbf{y}}{100} .$$

S is the value recorded above in **(a)**. Write these values in the appropriate column of the table.

[1]

(ii) Complete Fig. 2.2 by calculating *I*R, the potential drop, for each value of **y**, to three significant figures. [2]


© UCLES 2007 0653/05/O/N/07

(e) Plot a graph of the potential drop, *IR*, against length **y** (horizontal axis). Both axes should start at zero.

Draw a smooth curve through your points including the origin.

For Examiner's Use

[4]

3

X, Y and Z are three colourless solutions. Carry out the following tests which will enable you to suggest a name for two of these solutions. Solution **P** is an indicator. It is colourless in acid solution and pink in alkaline solution. (a) Place about 1 cm³ of each solution X, Y and Z in separate test-tubes. Add two drops of solution **P** to each. Record your observations in the table. solution X solution Y solution **Z** [1] State your conclusion about each solution. solution X solution Y solution Z [2] **(b)** The acid is known to be either hydrochloric acid or sulphuric acid. Carry out the tests for a chloride and a sulphate as described on page 8 to decide the name of the acid. Describe the test and result that enables you to decide. Only one test need be described. name of acid [3] (c) (i) Place about 1 cm³ of solution Y in a test-tube. Add 1 drop of the indicator P. Add drops of solution **X** until there is no further change. Record your observations. observations _____[1] (ii) Repeat (c)(i) using solution **Z** in place of solution **Y**. Record your observations. observations

© UCLES 2007 0653/05/O/N/07

For Examiner's Use

(d) Suggest a name for solution Z .	For Examiner
[1	l Use

© UCLES 2007 0653/05/O/N/07

CHEMISTRY PRACTICAL NOTES

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> -) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ²⁻) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2007 0653/05/O/N/07