

	UNIVERSITY OF CAMBRIDGE IN International General Certificate of		hunn trienepaper	s.com
CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		
COMBINED S	CIENCE		0653/23	

COMBINED SCIENCE

Paper 2 (Core)

October/November 2010 1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

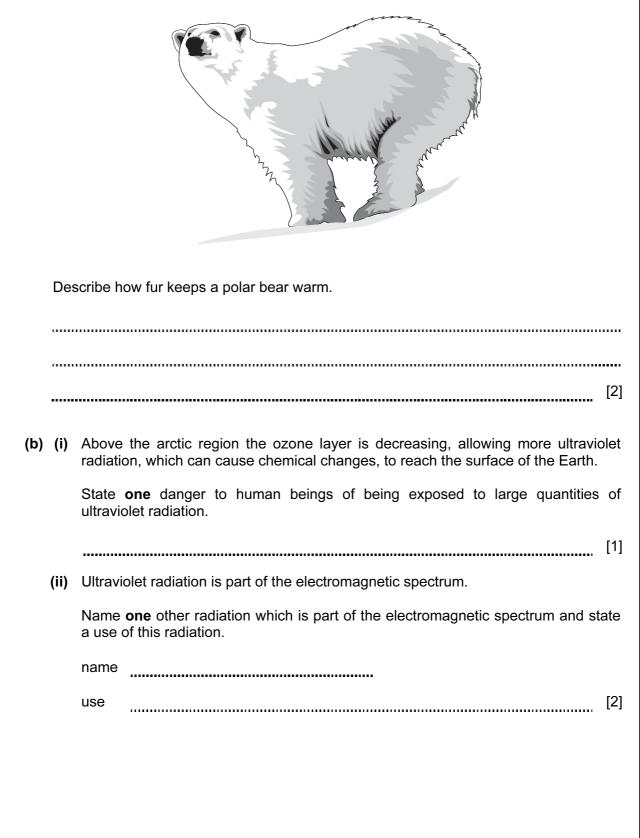
You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions. A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.


For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
Total		

This document consists of **21** printed pages and **3** blank pages.

BLANK PAGE

1 (a) Polar bears live in the cold, arctic region. They have thick, white fur.

2 (a) The apparatus shown in Fig. 2.1 can be used to react lead oxide and carbon.

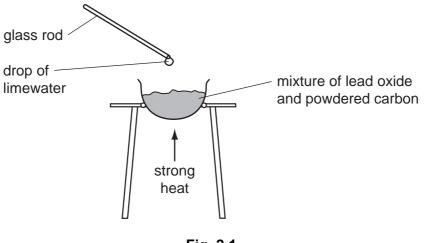


Fig. 2.1

When the mixture is heated, molten metal is formed in the container and the drop of lime water on the end of the glass rod becomes cloudy.

(i) Suggest the **word** equation for the reaction between lead oxide and carbon. Do **not** write a symbolic equation.

		[2]
(ii)	State one substance, shown in your equation in (i) , which is a compound.	
	Explain why this substance is described as a compound and not as an element.	
	substance	
	explanation	
		[3]

(b) Fig. 2.2 shows some of the apparatus used in the electrolysis of copper chloride solution.

For Examiner's Use

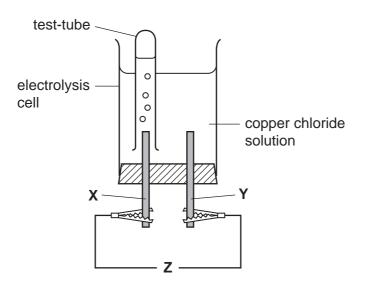


Fig. 2.2

(i) What is missing from position Z in Fig. 2.2?

			[1]
(ii)	Name the gas which collects in the test the anode or the cathode.	-tube, and explain whether electrode X	is
	gas		
	Electrode X is the	because	
			[2]

3 A healthy plant growing in a pot was watered and placed in a sunny window. A transparent plastic bag was placed over the plant, as shown in Fig. 3.1.

soil pot

- (a) The temperature near the window fell overnight. The next morning, small droplets of liquid water were visible on the inside of the plastic bag.
 - (i) Name the process by which plant leaves lose water vapour.

(ii) Name the small holes in the leaf through which the water vapour is lost.
 [1]
 (iii) Explain why the water formed droplets of liquid on the plastic bag.
 [2]

For

Examiner's Use (b) Fig. 3.2 shows a cell from the plant leaf.

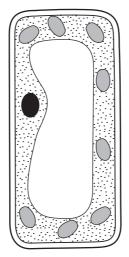
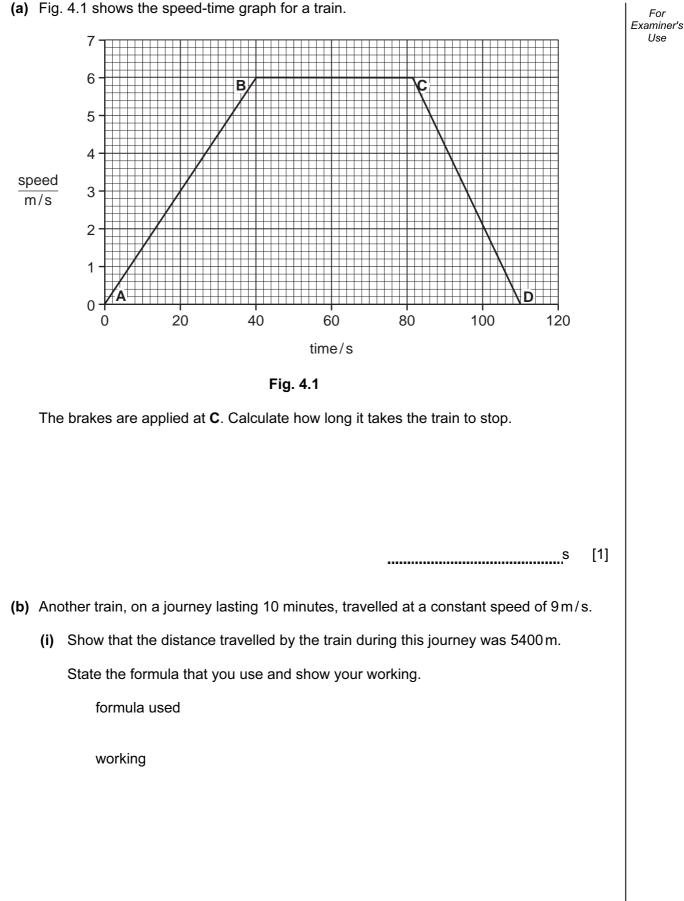



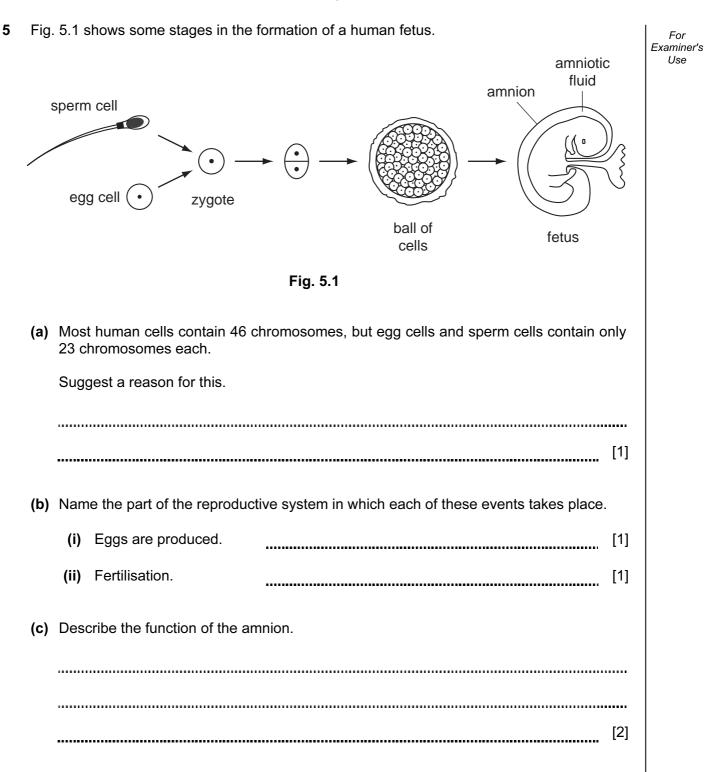
Fig. 3.2

(i) On the diagram of the cell in Fig. 3.2, label and name two structures that would not be present in an animal cell. [2]
(ii) Name the part of the leaf in which this cell could be found. [1]
(iii) The cell in Fig. 3.2 can photosynthesise. Write the word equation for photosynthesis.
+ + + + + [1]

(a) Fig. 4.1 shows the speed-time graph for a train. 4

8

For


Use

(ii) The average force needed for the train to maintain the speed of 9 m/s was 10000 N. Examiner's Calculate the work done by the train over 10 minutes. State the formula that you use and show your working. formula used

working

_____J [2] For

Use

10

(d) The fetus develops in the uterus.

It is attached to the uterus by the umbilical cord and placenta.

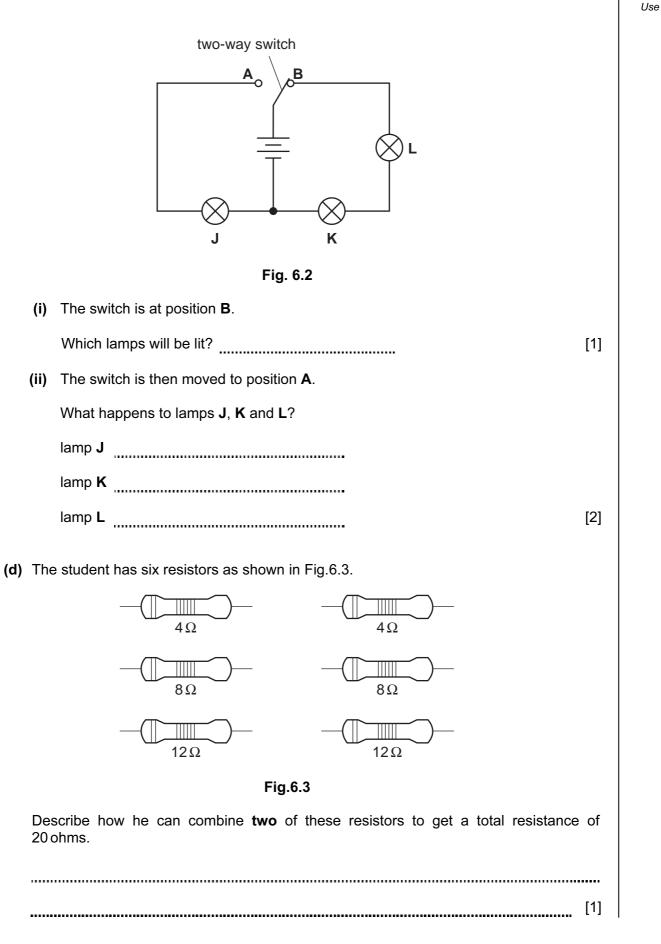
It obtains nutrients from its mother's blood, through the placenta.

Suggest why a pregnant woman should have more iron and calcium in her diet than when she is not pregnant.

iron	
calcium	
calcium	
	[3]

(a) Electrical equipment can be dangerous, especially when it is handled with wet hands. Examiner's Explain why you are quite likely to be electrocuted if you handle an electrical device with wet hands rather than dry hands. [1] (b) Fig. 6.1 shows a simple electric circuit. lamp cell ammeter voltmeter

Draw the circuit diagram for the circuit in Fig. 6.1 using the correct symbols.

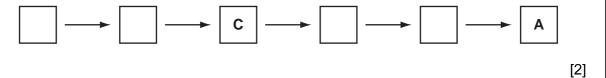

[3]

For

Use

6

(c) Fig. 6.2 shows a circuit built by a student.

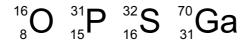

For Examiner's (e) Power stations produce electricity.

Six stages in the production of electricity at a coal-fired power station are shown below.

For Examiner's Use

- A electricity produced
- B coal burned
- **C** steam produced
- **D** turbine driven by steam
- **E** turbine turns generator
- F water boils

Using the letters **A** to **F**, list the stages in the correct order in the boxes below. Two have been done for you.



BLANK PAGE

15

Please turn over for Question 7.

7 (a) The chemical symbols for the atoms shown below include proton (atomic) numbers and nucleon (mass) numbers.

(i) State which of these symbols represent atoms of elements in the same **group** of the Periodic Table

[1]

(ii) Complete Table 7.1 which shows the names and the numbers of protons and neutrons in two of the atoms shown above.

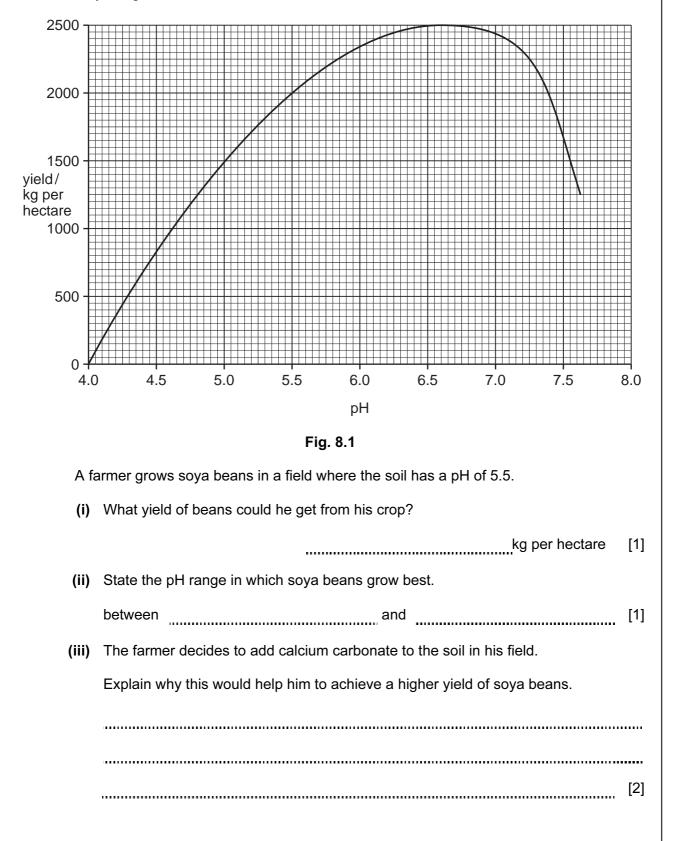
Table 7	7.1
---------	-----

element name	protons	neutrons
oxygen		
	15	16

[2]

- (b) Chlorine and hydrogen combine to form hydrogen chloride which dissolves in water to produce hydrochloric acid.
 - (i) Suggest a substance which reacts with hydrochloric acid to form the salt, copper chloride.

(ii) Suggest an element from the third period of the Periodic Table which reacts **safely** with hydrochloric acid to produce hydrogen gas.


......[1]

16

(c) Ethene is a gaseous compound of carbon and hydrogen. For Examiner's Use Fig. 7.2 shows two different chemical reactions, 1 and 2, involving ethene. reaction 1 carbon dioxide + water ethene - poly(ethene), a type of polymer reaction 2 Fig.7.2 (i) For reactions 1 and 2, deduce the type of chemical reaction which occurs. reaction 1 reaction 2 [2] (ii) For reaction 2, describe briefly what happens to the molecules of ethene during the reaction. [1]

17

- 8 Soya beans are an important crop in many tropical and subtropical countries, because they contain a lot of protein.
- For Examiner's Use
- (a) Fig. 8.1 shows how the yield of soya beans is affected by the pH of the soil in which they are grown.

(b)	The	e field is on a steep slope.	For
• •			Examiner's
	Des	scribe two things the farmer could do to reduce the risk of soil erosion.	
	1		
	2		
	•••••	[2]	
(c)		a beans are seeds. They grow after the flowers on the soya plants have been inated.	
	(i)	Soya flowers often have violet-coloured petals.	
		Suggest how soya flowers are pollinated.	
		[1]	
	(ii)	Explain why soya beans only grow after the flowers have been pollinated.	
		[2]	
	(iii)	Describe how you would test a soya bean seed for protein. State the result you would expect.	
		test	
		result [2]	

9 (a) Complete Table 9.1 to show the properties of alpha, beta and gamma radiations.

For Examiner's Use

_			
Та	ble	9.1	

	description	charge	range in air	ionising ability
alpha		positive	5 cm	very strong
beta	electron		50 cm	
gamma	wave		many kilometres	weak

[4]

(b) Many people have smoke detectors in their houses.

Smoke detectors contain a radioactive source which emits alpha radiation.

Explain why the alpha radiation from the smoke detector is not dangerous to people living in the house.

[1]

- **10** In many countries, river water is collected and treated to make it safe for humans to drink.
 - (a) State and explain which **two** of the processes shown below are used to treat river water so that it becomes safe to drink.

adding chlorine evaporation filtration chromatography first process explanation second process ---explanation [4] (b) Sulfur dioxide is a gaseous compound which is released into the air when fossil fuels containing sulfur compounds are burned. (i) Describe how sulfur dioxide gas could cause pollution of water in rivers and lakes. [3] (ii) Suggest one way in which sulfur dioxide emissions into the atmosphere are being reduced.[1]

(c) Fig. 10.1 shows a diagram of a water molecule, H_2O .

Choose words or phrases from the following list to complete the labelling of the diagram.

covalent bond nucleus	hydrogen atom oxygen atom	ionic bond proton
	Fig. 10.1	

[3]

BLANK PAGE

	0	4	, Helium		20	Neon	10	40	Ar Argon 18	84	Kr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86			ļ	c/I	7		Ļ	Lawrencium
	H>				19	Fluorine	6	35.5	C1 Chlorine	80	Br	Bromine 35	127	Ι	lodine 53		At	Astatine 85				۲	Ytterbium 70	2	No	Nobelium
	>				9 (O _{xygen}	8	32	Sultur 16	62	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84				Far F			Md	Mendelevium
	>				14	Nitrogen	7	31	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	<u>B</u>	Bismuth 83				191 1	Erbium	8	Еm	Fermium
	≥				5 (Carbon	6	28	Silicon	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82				601 T	Holmium 67	5	Es	Einsteinium
	≡				⊊ 0	Boron a	5	27	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	11	Thallium 81				791	Dysprosium	3	Ç	Californium
											Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80			-	AGL F	Terbium	2	Bk	Berkelium
										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			ļ	ردا ۱	Gadolinium 64	5	Cm	Curium
Group										59	Ï	Nickel 28	106	Pd	Palladium 46	195	F	Platinum 78				ZGL	Europium 63	2	Am	Americium
										59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77			-		Samarium 62	70	Pu	E
		- 1	Hydrogen	_						56	Fe	lron 26	101	Ru	Ruthenium 44	190	os	Osmium 76				80	F		Np	Neptunium
										55	Mn	Manganese 25		ц	Technetium 43	186	Re	Rhenium 75					žg			Uranium
										52	ې	Chromium 4	96	Мо	Molybdenum 42	184	≥	Tungsten 4				1 41 0	Praseodymium 50		Ра	Protactinium
											0	Chroi 24		2	Moly 42			74 T					Prase	3		
											>	Vanadium Chroi 23 24			Niobium Moly 41 42	181		Tantalum 73 74				0 2		232	Ч	_
										51		nadium 2,	93	ЧN	Niobium 41		Та	Hafnium Tantalum 73					Derium	232		Thorium
										51	>	itanium Vanadium 2,	93	ЧN	liobium	178	Hf Ta	Hafnium Tantalum 7.	227	Actinium +		0 C	Cerium 58	232		Thorium
	=				о С	Berylium	4	24	MG Magnesum 12	48 51	Sc Ti V	candium Titanium Vanadium 2.	89 91 93	ЧN	Yttrium Zirconium Nicbium 40	139 178	La Hf Ta	* Hafnium Tantalum 73	226 227	Actinium		SS	Derium	232	X X = atomic symbol Th	Thorium

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.