

	UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education
CANDIDATE	
CENTRE NUMBER	CANDIDATE NUMBER
COMBINED S	CIENCE 0653/31

Paper 3 (Extended)

October/November 2010 1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

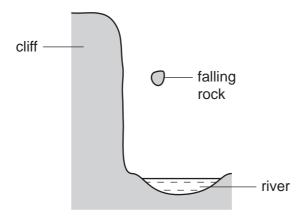
You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.


At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

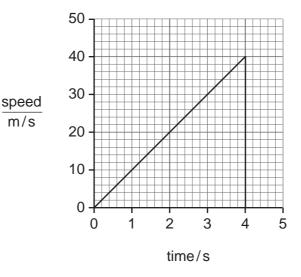
For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of 19 printed pages and 1 blank page.

1 Fig. 1.1 shows a rock that is falling from the top of a cliff into the river below.

(a) The rock accelerates downwards at 10 m/s^2 . The mass of the rock is 4 kg.

Calculate the force pulling the rock downwards.


State the formula that you use and show your working.

formula used

working

[2]

(b) Fig. 1.2 is speed-time graph for the motion of the rock. This graph ignores the effects of air resistance on the rock.

	Cal	culate the height of the cliff.	For Examiner's
	Shc	w your working.	Use
		[2]	
(c)	The	rock has an irregular shape.	
		scribe how you could find the density of an irregularly shaped object such as a rock. I should state the apparatus you would use and the measurements you would need to ke.	
		[4]	
(d)	The	e rock contains radioactive substances emitting high levels of ionising radiation.	
	(i)	State how the radioactivity could be detected.	
		[1]	
	(ii)	Explain why it would be dangerous for a person to handle this rock without proper protection.	
		[1]	

- 2 The gray wolf is a predator that lives in North America.
 - (a) In Wisconsin, Canada, the wolves' diet consists mainly of white-tailed deer, beaver, and snowshoe hares. These all eat plants.

For Examiner's

Use

(i) Construct a food web including all the organisms mentioned above.

		[3]
(ii)	State what the arrows in your food web represent.	
		[1]
(iii)	With reference to your answers to (i) and (ii), suggest why wolves are rarer th white-tailed deer.	an
		[2]

(b) People used to shoot gray wolves, because the wolves kill sheep on farms and deer that people like to hunt.

In 1978, a conservation programme for gray wolves began in Wisconsin and people were no longer allowed to shoot them.

Some people in Wisconsin are opposed to the wolf conservation programme.

Discuss the arguments for and against conserving the gray wolf.

[3]

For

Examiner's Use **3 (a)** Copper metal reacts with oxygen gas to form copper oxide. Table 3.1 shows information about two different types of copper oxide.

For Examiner's Use

-		~ 4	
Та	ble	3.1	

name	colour	chemical formula
copper(II) oxide	black	CuO
copper(I) oxide	red	Cu ₂ O

(i) Copper is a transition metal.

State **one** property, shown in Table 3.1, which is typical of transition metals.

(ii) The formula of the oxide ion is O^{2-} .

Use the formula of $\mathsf{copper}(I)$ oxide to deduce the charge on the copper ion in this compound.

Show your working.

[2]

(b) Fig. 3.1 shows apparatus used in the electrolysis of copper chloride solution.

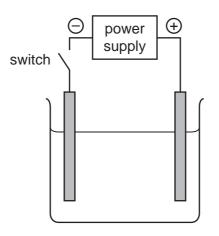


Fig. 3.1

(i) On the diagram, label clearly the anode and the electrolyte. [2]
(ii) Copper chloride solution contains copper ions and chloride ions.
When the switch in Fig. 3.1 is closed, bubbles of chlorine gas form at the anode and copper metal forms at the cathode.
Explain these observations in terms of ions, electrons and atoms.

4 (a) Fig. 4.1 shows a ray of light hitting a mirror. The angle of incidence is 50°.

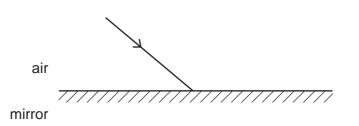


Fig. 4.1

On Fig. 4.1(i) use a ruler to draw and label the reflected ray,(ii) use a ruler to draw and label the normal,

(iii) label the angle of incidence.

(b) Fig. 4.2 shows the wave traces made by three sounds.

trace A	trace B	trace C

Fig. 4.2

(i) On the grid below, draw the trace of a sound wave which has twice the frequency of trace **A**.

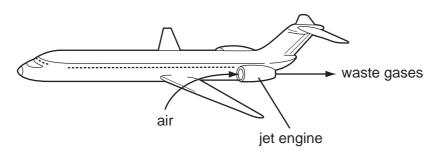
[1]

[1]

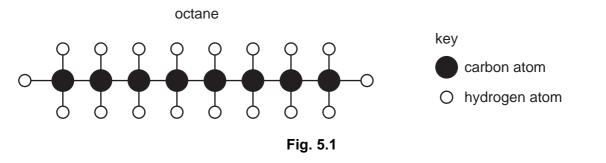
[1]

[1]

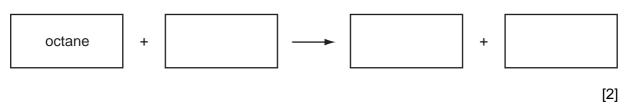
(ii) On the grid below, draw the trace of a sound wave which has half the amplitude of trace **A**.

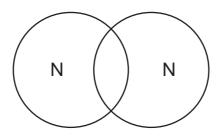

[1]

(iii) Which two traces in Fig. 4.2 show sounds with the same loudness?


[1]

5 In jet engines, hydrocarbon molecules from the jet fuel mix with air and burn. This releases a large amount of energy and produces a mixture of waste gases. These waste gases pass out through the back of the jet engine into the atmosphere.


For Examiner's Use


(a) Fig. 5.1 shows a molecule of octane, which is a typical hydrocarbon molecule in jet fuel.

- (i) State the chemical formula of octane.
- (ii) Complete the word equation below for the complete combustion of octane.

- (b) Air contains the element nitrogen, N₂.
 - (i) State the number of outer electrons in a single nitrogen atom.
 - (ii) Complete the bonding diagram below to show how the outer electrons are arranged around the atoms in a nitrogen molecule.

[2]

[1]

[1]

.....

.....

(c) Table 5.1 shows information about some metallic materials.

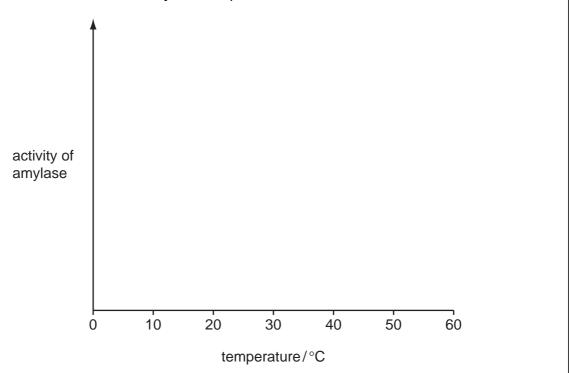
Table 5.1

material	strength	density
mild steel	very high	very high
aluminium	low	low
duralumin (an aluminium alloy)	very high	low

Duralumin is used in the manufacture of aircraft.

Explain why the properties of this material make it suitable for this purpose.

[2]


Fig. 6.1 shows a generalised reflex arc. Examiner's neurone Υ central nervous neurone neurone system Х Ζ receptor effector Fig. 6.1 (a) Name the neurones labelled X, Y and Z. Х Y Ζ [3] (b) A student hears a sudden, loud bang. Receptors in his ear respond to the sound by generating electrical impulses in neurone **X**. These impulses travel along the reflex arc, eventually reaching an effector. Suggest what the effector could be in this reflex, and how it would respond. effector [2] response (c) Another reflex action involves the secretion of saliva into the mouth, in response to the smell of food. Saliva contains the enzyme amylase. Describe the role of amylase in the digestion of food. (i) [2] (ii) Explain why it is necessary for most types of food that we eat to be digested. _____ [2]

6

For

Use

(iii) On the axes below, sketch a curve to show how the activity of amylase from human saliva would vary with temperature.

[2]

For

Examiner's Use 7 (a) A student set up the electric circuit in Fig. 7.1.

It contains three lamps L1, L2 and L3.

It contains three switches S1, S2 and S3.

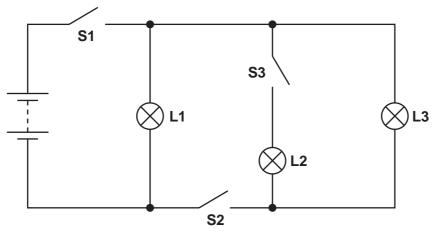
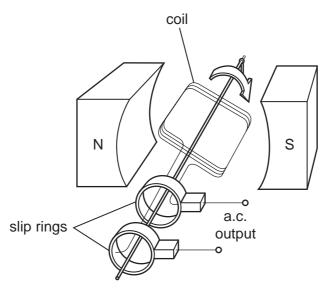


Fig. 7.1

In Table 7.1 write the words **'on'** or **'off'** to show when each lamp is lit or not lit for each set of switch positions.


swi	tch posi	tion	lam	p 'on' or	'off'
S1	S2	S3 L1 L2		L3	
closed	closed	closed			
closed	closed	open			
closed	open	open			

[3]

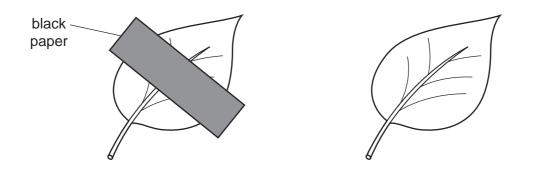
(b) Fig. 7.2 shows an electrical device. For Examiner's Use -0 primary coil O secondary coil 20 turns 200 turns 23 V a.c. 0 -0 Fig. 7.2 (i) Name the device. [1] (ii) Calculate the output voltage. State the formula that you use and show your working. formula used working [2]

(c) Fig. 7.3 shows a simple a.c. generator.

Describe and explain how the generator works. Your answer should refer to

- how a voltage is generated,
- why an alternating voltage is generated,
- why slip rings are used.

[4]


8 (a) Explain why plants need light for photosynthesis.

[2]

(b) A student fixed a piece of black paper over a leaf, which was still attached to the plant. He left the plant in the sun for two days.

He then removed the leaf from the plant and tested it for starch, after removing the black paper.

Fig. 8.1 shows the leaf before and after he did the starch test.

before testing

after testing

Fig. 8.1

Complete the diagram of the leaf after testing in Fig. 8.1, using labels to show the colours of each part. Do **not** colour the diagram. [2]

(c) In daylight, plant leaves take in carbon dioxide and give out oxygen. In darkness, they take in oxygen and give out carbon dioxide.

Explain why this happens.

[3]

9 Fig. 9.1 shows the apparatus a student used to measure the rate of reaction between some powdered metal and dilute hydrochloric acid.

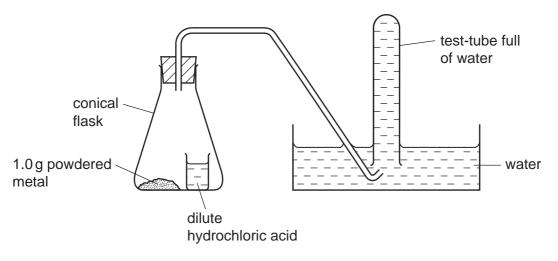


Fig. 9.1

When the student tilted the conical flask, the acid mixed with the powdered metal. Any gas which was produced collected in the test-tube, pushing the water out. The student used a stopwatch to measure the time taken for the test-tube to fill with gas.

- (a) (i) Name the gas produced when metals react with dilute acid.
 - [1]
 - (ii) State the formula of the *ion* that is present in **all** dilute acid solutions.

......[1]

For

Examiner's Use (b) The student used apparatus like that in Fig. 9.1 to compare the rates of reaction between dilute hydrochloric acid and three powdered metals, **X**, **Y** and **Z**.

The results the student obtained are shown in Table 9.1.

metal	mass of metal/g	time for gas to fill the test-tube/seconds
x	1.0	154
Y	1.0	28
Z	1.0	76

Table 9.1

(i) The student was careful to ensure that the only variable (factor) which differed between the experiments was the type of metal.

State **two** variables, other than the mass and surface area of the metals, that the student must keep the same in each experiment.

1	
2	 [2]

(ii) Explain how the results show that the rate of reaction was the lowest when metal **X** was used.

[1]

(iii) The student repeated the experiment with metal **Y** but this time he used a single piece of metal which had a mass of 1.0 g.

State how the rate of reaction would differ from the experiment in which 1.0 g of powdered metal was used. Explain your answer in terms of the collisions between the surface of the metal and ions in the solution.

[3]

(c) When magnesium reacts with dilute hydrochloric acid, HC*l*, one of the products is magnesium chloride, MgC*l*₂.

Construct a balanced symbolic equation for this reaction.

[2]

BLANK PAGE

	0	⁴ Helium	20 Neon 40 Argon	6 84 Krypton 36	131 Xenon 54 Renon Radon 86	175 Lutetium 71 Lavencium 103
	١١		9 Fluorine 35.5 Chlorine Chlorine	Bromine 35	127 J 53 At 85 Astatine	173 Ytterbium 70 Nobelium 102
	N		aufutur Sulfur	79 79 Selenium 34	128 Tellurium 52 Polonium 84	169 Thuilum 69 Mendelevium 101
	>		Nitrogen 7 Nitrogen 31 Phosphorus	75 AS Arsenic 33	122 Sb 51 Antimony 209 Bi Bismuth	167 EF EF 68 68 68 F F 100 100
	2		6 Carbon 6 Carbon 8iicon 8iicon	73 Ge Germanium 32	119 50 Tin 207 82 Lead	165 Homium 67 Einsteinum 99
	≡		11 B Boron 5 27 Auminium	70 Ga Gallium 31	115 In 1ndium 49 204 T1 T1 81	162 Dysprosium 66 Cf Cationnum
				65 Zn 30 ^{Zinc}	112 Cadmium 48 201 Pg Mercury	159 Terbium 65 Berkelium 97
				64 Cu Copper	108 Ag Silver 197 197 79 Cold	157 Gd Gd Gadalintum 64 CT B Gurtum
				59 Nickel 28	106 Palladium 46 195 Pt Ptatinum 78	152 Eu 63 Americium 95
				59 Co cobait	103 Rhodium 45 192 1 12 1 12 Irf	150 Samarlum 62 Putonlum 94
		¹ Hydrogen		56 Fe	101 Ruthenium 44 190 OS 0S	Promethum 61 Neptunium 93
			_	55 Manganese 25	Technetium 43 186 Re Rhenium 75	144 Neddymium 60 038 238 238 92 Uranium
				52 Cr Chromium 24	96 Molybdenum 42 184 184 74 Tungsten 74	141 Praseodymium 59 Protactinium 91
				51 V Vanadium 23	93 Niobium 41 181 Ta Tantalum 73	140 Cen tum 58 232 232 232 90 1horium
				48 Ttanium 22	91 Z irconium 40 178 Hafnium 72	ic mass ool ic) number
				45 SC Scandium 21	89 Xttrium 39 139 139 Lanthanum 57	227 Actinium 89 Actinium 90 Actinium 1 8 Actinium 1 8 Actinium 1 8 Actinium 1 80 Actiniu 1 80 Actini 80 Actini 1 80 Actini 180 Actini 180 Actini 180 Actini
			r			
	=	-	9 Berylium 24 Magnesum	40 Calcium 20	88 Strontium 38 137 137 56 Barium	Franctum 226 227 Branctum Radium Addinium 87 88 Addinium 88 Radium 89 *58-71 Lanthanoid series 190-103 Actinoid series 1 a a = relative a Key X a = relative a b b = proton (a

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

20