www.xiremenabers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/02

Paper 2

May/June 2005

2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

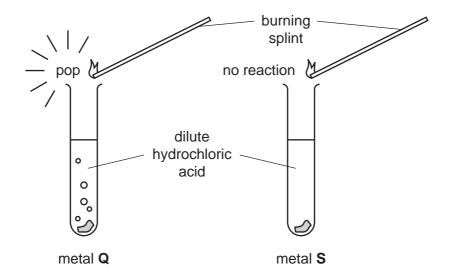
READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.


Stick your personal label here, if provided.

For Exam	niner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of **24** printed pages.

1 Fig. 1.1 shows some experiments carried out by a student investigating the reactions of three metals, **Q**, **R** and **S**.

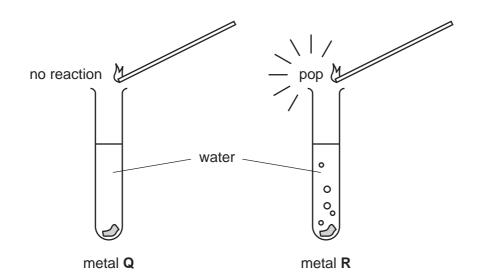


Fig. 1.1

least reactive

(a)	(i)	Name the gas given off in these experiments.	
			[1]

(ii) Place the metals in the order of reactivity suggested by the results of the experiments.

most reactive

[1]

(iii)	State ${\bf one}$ observation which would show that the reaction between metal ${\bf R}$ are water is exothermic.	ıd
		 1]
(b) Fig.	1.2 shows the apparatus and some of the substances needed to make an electric	al
sodium chloride		
salt	beaker strips of metals Q and S , and connecting wires	
	Fig. 1.2	
(i)	State the other substance needed to make the cell.	
	[′	1]
(ii)	In the space below, draw a diagram showing how the apparatus and substance should be used to make an electrical cell whose voltage is being measured.	es:
	[2	21
		-
(iii)	Explain why metal R , shown in Fig. 1.1, would be unsuitable for use as a electrode in this electrical cell.	ın
	[1]

- 2 Sheep, like most mammals, have skin covered by hair. The covering of hair on a sheep is called a fleece. The fibres which make up the fleece are called wool. Wool fibres are elastic, which means that they can stretch and then return to their original length.
 - (a) Fig. 2.1 shows how the length of wool fibres changes as different forces are applied to them.

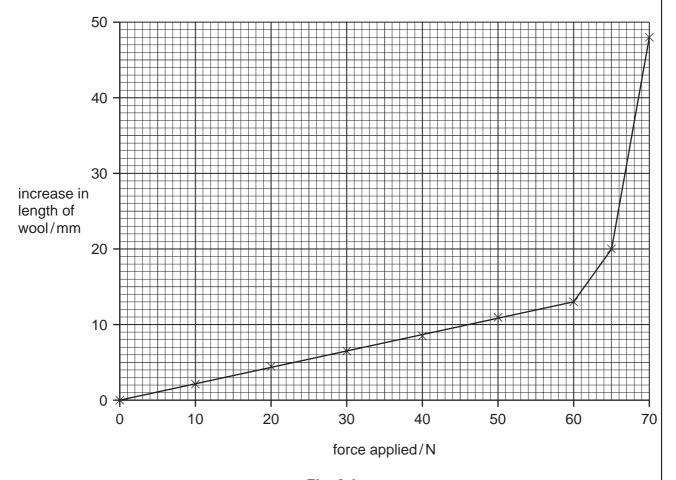


Fig. 2.1

Describe the relationship between the force applied and the increase in the length of the wool fibres up to a force of 60 N.	(i)
[2]	
) Suggest what happens when a force greater than 70 N is applied to the wool fibres.	(ii)
[1]	

(b)	to m		ep to maintain their body temperature in cold conditions. With refe eat transfer, suggest how wool reduces heat loss from a sheep's	
				[2]
(c)		no sheep are a farmer can	re kept for their excellent wool. The finer the wool, the better the get for it.	e price
	hot shee	and dry. A seep belonging	t a flock of sheep on a farm in a part of Australia where the clin second farmer kept sheep in a wetter, cooler area. The fleeces g to the first farmer had fewer, thicker fibres than the fleeces to the second farmer.	of the
	_	gest two diff s of sheep.	ferent factors which might account for this variation between the	ne two
				[2]
(d)		•	the skin is a characteristic of mammals. What type of skin con an animal from each of the following groups?	vering
	(i)	reptiles		<u></u> [1]
	(ii)	amphibians		[1]

3 Fig. 3.1 shows an astronaut.

Fig. 3.1

(a) Four astronauts are standing on four different planets. One of these planets is Earth, which has a gravitational field strength of 10N/kg.

Table 3.1 shows the mass and weight of each astronaut as they stand on the four planets.

Table 3.1

astronaut	mass/kg	weight / N
A	70	140
В	60	600
С	50	1000
D	80	160

(i)	Which astronaut is on Earth? Explain your answer.	
	[1]
(ii)	Which two astronauts are standing on planets with the same gravitational fiel strength?	d
	[1]
(iii)	Which astronaut would weigh the least on Earth? Explain your answer.	
	[1]

(b)	Astronauts on the Moon are unable to talk directly to each other, but must use radio signals as the Moon has no atmosphere.
	Explain why sound waves need a medium such as air to travel through.
	[2]
(c)	A radio signal sent from Earth to an astronaut on the Moon travels 400 000 kilometres. The speed of radio waves is 300 000 km/s.
	Calculate how long it will take the radio signal to travel from the Earth to the astronaut on the Moon. Show your working and state the formula that you use.
	formula used
	working
	s [2]

4 Mixtures of raw materials used to make three types of coloured glass are shown below.

blue glass	violet glass	green glass
white sand	white sand	white sand
potassium carbonate	sodium carbonate	sodium carbonate
borax	potassium nitrate	potassium nitrate
lead oxide	calcium carbonate	calcium carbonate
cobalt oxide	manganese dioxide	iron oxide
	iron oxide	copper oxide

(a)	For which colours	of glass shown above is	limestone a raw mater	ial?
				[1]
(b)		mixture of raw materials	s required for colourl	ess glass would differ
	Explain your ansv	ver.		
				[3]
(c)	The diagrams in substances.	Fig. 4.1 show the arra	angement of particles	in different types of
	Α	В	С	D
\(\frac{1}{2}\)				
		Fig. 4.	1	
	State, with reason a typical glass.	ns, which diagram, A , B , 0	C or D , shows the way	atoms are arranged in
	diagram			
	reasons			

(d) Craftsmen who make glass ornaments use a special gas burner to melt glass. Fig. 4.2 shows this type of burner which gives a much higher flame temperature than an ordinary gas burner such as a Bunsen burner.

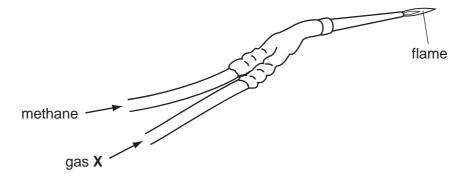
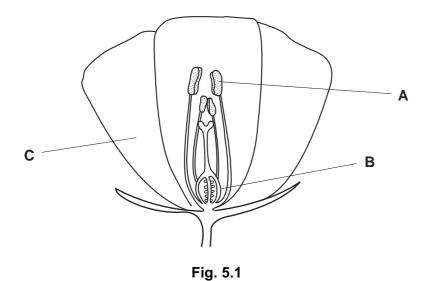



Fig. 4.2

	9
(i)	Suggest the name of gas X .
	[1]
(ii)	The gas suppliers add a sulphur compound to the methane. This gives an odour to the methane so that leaks may be detected. The sulphur compound burns when the methane burns.
	Explain why the amount of the sulphur compound added to the methane should be kept at a very low level.
	[2]

5 Fig. 5.1 shows the structure of an insect-pollinated flower. The flower produces nectar on which bees can feed.

(a) Name the parts labelled A, B and C.

	Α	
	В	
	С	[3]
(b)	Des	scribe how pollination takes place in this flower.
		[3]

(c)	Ne	Nectar contains sugar, which provides the bees with energy.		
	(i)	Name the process by which a plant produces sugar, such as glucose.		
			[1]	
	(ii)	Describe the role of chlorophyll in this process.		
			[2]	
(d)	Bee	es may be eaten by birds called bee-eaters.		
	(i)	Use the information in this question to construct a food chain including bee-eater	rs.	
			[2]	
	(ii)	Which organisms in your food chain are consumers?		
			[1]	

- 6 Electricity is a useful form of energy.
 - (a) Use the information given to answer the questions below.

Wind power

Wind can be used as an energy source to produce electrical energy. One wind turbine is able to generate 2 megawatts (MW) of power.

Nuclear power

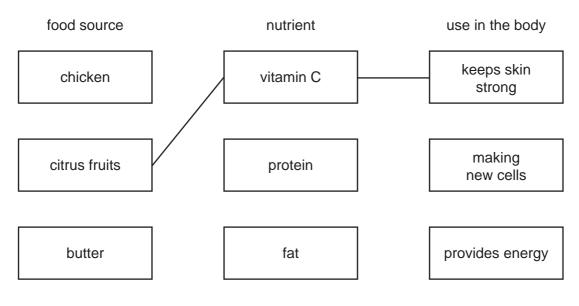
A nuclear power station uses enriched uranium as a fuel. Radioactive waste materials are produced. A typical nuclear power station can generate 1500 MW.

Electricity demand

Typical demand for electric power in an industrial country is about 50 000 MW.

(i) State one advantage and one disadvantage (apart from cost) of using each energy source to generate electricity in an industrial country.

	using wind power	using nuclear power
advantage		
disadvantage		


				[4]
	(ii)	Why are scientis	ts trying to find alternatives to f	ני-ו ossil fuels for generating electricity?
				[1]
b)	(i)	Name the device stations before tr		of the electricity generated at power
				[1]
	(ii)	Explain why it is transmission.	s advantageous to increase t	he voltage of the electricity before

[2]

7 (a) The boxes below list foods each containing a particular type of nutrient, and the use of that nutrient in the body.

Draw a line from each nutrient to a good food source and to a use of it in the body.

The first one has been done for you.

(b) If the diet contains more protein than is needed, the excess is changed into urea and excreted from the body.

(1)	Name the organ in which excess protein is converted to urea.	
		[1]
(ii)	How is the urea excreted from the body?	
		••••
		••••
		[2]

[2]

	14
8 Wa	ter, H ₂ O, and hydrogen peroxide, H ₂ O ₂ , are colourless, transparent liquids.
(a)	What is meant by the term transparent?
	[1]
(b)	State one similarity and one difference between a molecule of water and a molecule of hydrogen peroxide.
	similarity
	difference
	[2]
(c)	Hydrogen peroxide slowly decomposes according to the equation
	hydrogen peroxide → water + oxygen
	Manganese dioxide is an insoluble compound which catalyses this reaction.
	A student added 1.0 g of manganese dioxide to an aqueous solution of hydrogen peroxide.
	hydrogen o o o o o o o o o o o o o o o o o o o
	solution
	manganese oo oo dioxide
	(i) Describe how the student can show that the gas given off is oxygen.

	(ii)	Predict the mass of manganese dioxide that is left in the test-tube when all the hydrogen peroxide has decomposed.
		Explain your answer.
		וכו
		[2]
(d)	Pur wat	e water is not suitable for removing oil from cloth, because oil does not dissolve in er.
	_	gest two ways of cleaning the cloth, other than using pure water, that would be re successful in removing oil.
	1	
	2	[2]
		[2]

9 (a) A student sets up an electric circuit as shown in Fig. 9.1.

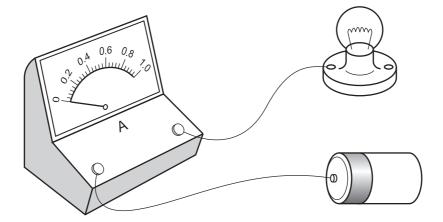
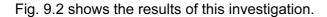


Fig. 9.1


- (i) In the diagram the ammeter reading is zero. What is wrong with the circuit?

 [1]

 (ii) What is the **name** of the unit in which current is measured?

 [1]
- **(b)** Another student investigates the relationship between the potential difference across a lamp and the current passing through it.
 - (i) Draw a circuit diagram showing the apparatus needed and how it should be connected. Use the correct symbols.

[3]

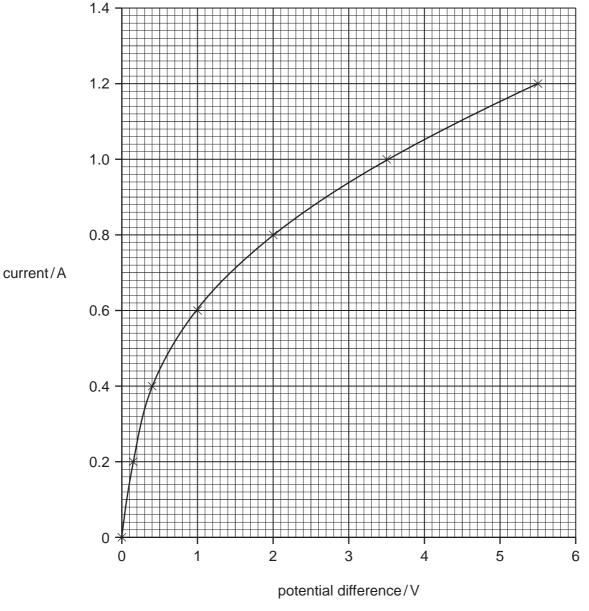


Fig. 9.2

(ii) Using data from Fig. 9.2 calculate the resistance of the lamp when the current passing through it is 0.4 A.

Show your working and state the formula that you use.

formula used

working

Ω [3]

(iii)	Using the formula power = voltage x current	
	calculate the power used by the lamp when the current is 0.4A.	
	147	F41
	W	[1]
(iv)	State the number of joules of energy being transferred per second, when current flowing through the lamp is 0.4 A.	the
	J/s	[1]

10	(a)	When two cars collide, energy is said to be conserved. Explain what is meant by this.
		[2]
	(b)	When water in a beaker is heated, its temperature rises until it begins to boil at 100°C. On further heating, it continues to boil but the temperature stays at 100°C.
		Explain, in terms of particles, why this happens.
		[2]
	(c)	Explain why you should never switch on a mains electrical appliance using wet hands.
		[2]
	(d)	Fig. 10.1 shows a sample of gas held in a cylinder by a piston.
		gas
		Fig. 10.1
		Explain why, when the piston is pushed in, the pressure of the gas increases.
		[2]

11 Fig. 11.1 shows apparatus which can be used to investigate what happens when sodium chloride solution is electrolysed.

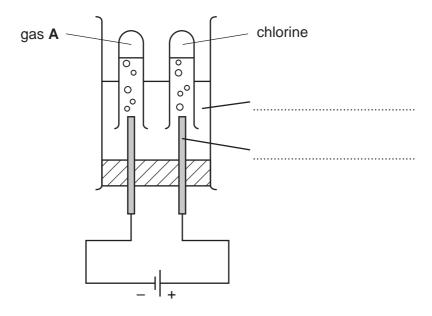


Fig. 11.1

(a) Complete the labelling of the diagram using words from the following list.

anode cathode current electrolyte ion [2]

(b) Table 11.2 shows the results of pH measurements made on the solution during an experiment using the apparatus in Fig. 11.1.

Table 11.2

before the current is switched on	after the current has passed for several minutes
pH 7.0	pH 13.5

Explain these results.	
	[2]

(c) Fig. 11.3 shows a molecule of the compound halothane. Halothane is used as an anaesthetic.

Fig. 11.3

(i)	State the number of different elements present in one molecule of halothane.
	[1]
(ii)	State the total number of halogen atoms in one molecule of halothane.
	[1]
(iii)	An atom of chlorine has a proton number of 17. State the number of electrons in the outer energy level (shell) of a chlorine atom.
	[1]
(iv)	An atom of gas A in Fig. 11.1 has a nucleon number of 1.
	State the type of particle not present in the nucleus of this atom, but which is present in the nucleus of atoms of all other elements.
	[1]

12 Fig. 12.1 shows a human skull and the lower jaw.

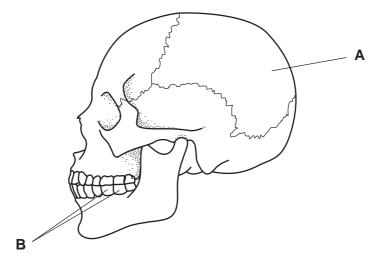


Fig. 12.1

(a)	1116	e part labelled A is made of bone.	
	(i)	What is the role of this part of the skull?	
			[1]
	(ii)	Explain why cartilage would not be a suitable material for this part of the skull.	
			••••
			[1]
	(iii)	State one part of the body where cartilage is found, and describe its role.	
			[2]
			(-)
(b)	(i)	Describe the function of the teeth labelled B on Fig. 12.1.	

(ii)	On average, the teeth labelled B are more likely to decay than the teeth at the front the mouth. Suggest an explanation for this.	ont
		[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

								Gre	Group								
_	=								-			≡	≥	>	>	\blacksquare	0
	_						Hydrogen										He lium 2
7	° &							_				= α	¹² C	† Z	9+ C	6 П	20 Z
3 Lithium	Beryllium 4	E										S Boron	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24	-										27	5 S	31	32	35.5	40
Sodium 11	Magnesium 12	En										Aluminium 13	_	Phosphorus	Sulphur 16	Chlorine 17	Ar Argon
39	40		48	51	52	55	56	59	59	64		70	73	75	62	80	84
Potassium	Calcium	m Scandium	Titanium	Vanadium 23	Chromium	Mn Manganese 25	ron Fe	Cobalt 27	Nickel Z	Copper 29	Zn c Znc	Gal lium 31	٤	AS Arsenic 33	Selenium	Bromine 35	Krypton 36
85	88 6 7	88 >	91	93	96	L C	101	103 Rh	106	108 A C	112 Cd	115 In		122 SP	الم		131 X.P.
Rubidium 37	388	39	Zirconium 40	Niobium 41	Molybdenum 42	Ε	Ruthenium 44	Rhodium 45	4		Cadmium 48	49		Antimony 51	Tellurium 52		Xenon 54
133 CS	137 Ba	139 La	178 H	181 a	184	186 Re	190 Os	192 Ir	195 P	197 Au	201 Hg	204 T 1	207 Pb	209 B			Rn
Caesium 55	Barium 56	n Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78		Mercury 80	8	Lead 82	Bismuth 83	_	Astatine 85	Radon 86
Fr Francium	226 Ra Radium																
87	88	88															
*58-71 L	anthan.	*58-71 Lanthanoid series		140	141	144	1	150	152	157	159	162	165	167	169	173	175
90-103 Actinoid series	Actinoic	d series		Cerium	Pr Praseodymium	Neodymium	Pm Promethium 61	Samarium Sa	Europium	ε	Tb Terbium	Dy Dysprosium	Holmium F2	Erbium	Thulium	Yb Ytterbium	Lutetium
	В	a = relative atomic mass	nic mass		3	8	5	20	3		3	3	5	3	3	2	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Lr Lawrencium 103

Nobelium

β

a = relative atomic mass X = atomic symbol

м 🗙

Key

Mendelevium 101

Fm Fermium

Einsteinium

 \vec{c}

BKBerkelium
97

Curium

Americium 95

Neptunium | 93

Pu

232 **7** Thorium

06

b = proton (atomic) number