CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0654 CO-ORDINATED SCIENCES

0654/23

Paper 2 (Core), maximum raw mark 120

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Scheme Syllabus P	
				IGCSE – October/November 2013	0654	23
1	1 (a) A to cell mer B to nucleus C to cell wall			mbrane ; s ; Il/large vacuole ;		[3]
	(b)	wate mine	er ; eral salts	s/named mineral ;		[2]
	(c)	(i)	transpo of suga	rt ; rs/substances made in the leaves ;		[2]
		(ii)	roots ha no sour	ave no sucrose/short of nutrients ; ce of energy/cannot respire ;		[2]
						[Total: 9]
2	(a)	(i)	argon//	Ar;		[1]
		(ii)	calcium metal w	/lithium and oxygen/sulfur/fluorine ; /ith non-metal ;		[2]
	(b)	(i)	nucleus	; ;		[1]
		(ii)	15 ; same a Group \	s number of electrons/3 shells = Period 3, 5 o / so must be phosphorus which has proton num	uter electrons mea ber 15 ;	ans [2]
	(c)	(i)	magnes	sium sulphate ;		[1]
		(ii)	filter mix dry the	xture (W) ; solid ;		[0]
			use bala	ance to find mass/weigh it ;		[3]
						[i otal: 10]
3	(a)	(i)	change	resistance (of circuit)/change current through re	esistor ;	[1]
		(ii)	X – amı	meters need to be in series in a circuit ;		[1]
		(iii) $R = V/I$; = 8/0.6 = 13.3 Ω ;				

Page 3		ge 3	Mark Scheme	Syllabus	Paper	
			IGCSE – October/November 2013	0654	23	
	(b)	decrease decrease stays the 3 correct	es es e same : = 2 marks, 2 correct = 1 mark ;;		[2]	
	(c)	length ; diameter		[2] [Total: 8]		
4	(a)	crush/chop ; mix with, ethanol/alcohol ; pour into water ; milky appearance indicates presence of fat ;				
	(b)	for growt for repain other use	h ; ; e of protein ;		[max 2]	
	(c)	increase idea of m	[2]			
	(d)	proteins to amino proteins	[max 2]			
	(e)	reductior	n of habitat ;			
		area too species l	o small to support populations/reduction in bi become endangered/lack of opportunity to find new	odiversity/extinct medicines ;	ion/	
		flooding/leaching of minerals ; due to rain falling directly on soil/lack of protection of tree canopy/increas runoff ;				
		soil erosion ; due to lack of tree roots ;				
		drought ; due to la				
		fewer tre to remov	es to photosynthesise / less photosynthesis ; e carbon dioxide ;			
		burning t	rees produce CO ₂ ;			

	Page 4		Mark Scheme	Syllabus	Paper			
			IGCSE – October/November 2013	0654	23			
	rot by	rotting trees produce CO ₂ ; by respiration of microbes ;						
	carbon dioxide traps long-wave radiation/infra-red/heat/thermal energy/i greenhouse gas ; reduces rate of loss of heat from the Earth's surface :							
			· · · · · · · · · · · · · · · · · · ·		[
					[Total: 13]			
5	(a) (i)	Q ; orar form	ge layer is rust ; ed when iron reacts with (dissolved) air and water ;		[3]			
			· · · · ·					
	(ii)	calc hydr	ium/magnesium/zinc ; ogen ;		[2]			
	(iii)	(dep whic idea	ends on answer to (ii) must be lower in activity se sh reacts) Ily zinc or iron ;	ries than (ii) and c	one [1]			
	(b) coj coj ele	oper e rrect p ctrode	electrode and key connected to power supply by wire olarity copper positive key negative ; e and key dipping into the solution ;	es ;	[3]			

6 (a)

three correct linkages uses to type = two marks ;; one correct linkages uses to type = one mark ; three correct linkages type to effect = two marks ;; one correct linkages type to effect = one mark ;

[4]

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0654	23

 (b) sine wave ; amplitude correctly labelled ; wavelength correctly labelled ;

[3]

[Total: 7]

7 (a)

colour
normal ;
normal
albino

[2]

[1]

(b) <u>phenotype</u>;

- (c) (i) (parents' genotypes) Aa and Aa; gametes A and a from both parents; offspring genotypes AA, Aa, Aa and aa;
 (ii) 3:1;
- (d) breed it with an albino snake ;
 if any albino offspring it is heterozygous/if no albino offspring it is homozygous ;
 [2]

[Total: 9]

8	(a) (i)	carbon dioxide ;	[1]
	(ii)	pass gas into limewater; goes cloudy ;	[2]
	(iii)	salt ;	[1]
	(iv)	9 ; 3 ;	[2]

	Page 6			Mark Scheme	Syllabus	Paper			
				IGCSE – October/November 2013	0654	23			
	(b)	(i)	iden Iowe	tifies higher pH with lower acid concentration ; ering acid concentration decreases the rate ;		[2]			
		(ii)	temp surfa	emperature ; surface area of calcium carbonate ; degree of agitation of the mixture :					
			uogi						
						[Total: 10]			
9	(a)	(i)	80m	;		[1]			
		(ii)	(spe	ed = distance/time = 50/10 =) 5 m/s ;		[1]			
		(iii)	not r	noving ;		[1]			
		(iv)	unba	alanced because speed is changing ;		[1]			
	(b)	geo	othern	nal/hydroelectricity/waves/wind/biomass;		[1]			
	(c)	(i)	kine	tic energy ;		[1]			
		(ii)	(grav	vitational) potential energy ;		[1]			
	(d) der = 4		sity = 5/36 =	= mass/volume; = 1.25 g/cm³;		[2]			
	(e)	(i)	parti irreg	cles far apart ; ular arrangement ;		[2]			
		(ii)	parti	cles move faster therefore more collisions (with tyre	e wall) ;	[1]			
(iii)			 heat transferred from body to sweat/heat absorbed by sweat from athlete's body/heat energy in body reduced by sweating; kinetic energy of water molecules increase/water molecules move faster; faster moving/more energetic (water) molecules escape/leave the surface/water molecules turn to gas/vapour; break bonds/break forces of attraction between molecules; (KE)/energy of (remaining) water molecules (in sweat) decreases; 						
						[Total; 15]			

	Page 7		,	Mark Scheme	Syllabus	Paper	
				IGCSE – October/November 2013	0654	23	
10	0 (a) A trache B lung ;		ache ung ;	a ;	[2]		
	(b)	(i)	mov from dow	ement of molecules ; region of high concentration to low concentration ; n a concentration gradient ;		[max 2]	
		(ii)	plas	ma ;		[1]	
			more refer so m so m	e energy used/more muscle contraction ; rence to respiration/oxidation of glucose ; nore carbon dioxide produced by cells ; nore carbon dioxide diffuses into the blood ;		[max 2]	
		(iv)	incre idea	increases ; idea of greater diffusion gradient (from blood to alveolus) ;			
						[Total: 9]	
11	(a)	coa	I/pea	at ;		[1]	
	(b)	(i)	<u>fract</u>	ional distillation / fractionation ;		[1]	
		(ii)	(veh burn	icle) fuel ; is easily/releases much energy when burnt ;		[2]	
	(c)	(i)	H - 2 C 1	H H -C C H H H H H			
			6 H	all single bonded to carbon ;		[2]	
		(ii)	etha <i>(LH</i> S	ne + oxygen → carbon dioxide + water ;; S for 1 mark and RHS for 1 mark)		[2]	
	(d)	(i)	crac	king ;		[1]	
		(ii)	air c reac	ontains oxygen ; tant would burn instead of crack/owtte ;		[2]	
						[Total: 11]	

Pa	Page 8		3 Mark Scheme	Syllabus	Paper
			IGCSE – October/November 2013	0654	23
12 (a)	wav tota	res ar I inter	e reflected along fibre ; nal ;		[2]
(b)) (i)	corre corre	ect colours ; ect positions ;		[2]
	(ii)	raind	rops ;		[1]
(c)) (i)	same same	e horizontal level as nose ; e distance behind mirror that nose is from mirror ;		[2]
	(ii)	same uprig virtua	e size as object ; ht ; al ;		[3]
					[Total: 10]