

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/23

Paper 2 (Core)

October/November 2012

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO ${\bf NOT}$ WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
Total					
L	<u> </u>				

This document consists of 28 printed pages.

1

Flowers are organs in which sexual reproduction takes place. (a) (i) Complete the definition of sexual reproduction. Sexual reproduction is the process involving the fusion of nuclei to form a diploid and the production of genetically _____ offspring. [3] (ii) State the scientific term for the fusion of two nuclei. [1] **(b)** Fig. 1.1 shows a section through a flower. В Fig. 1.1 (i) Name the parts labelled A and B. Α [2] В (ii) State the **letter** of the part in which the male gametes are produced, a zygote is produced. [2]

© UCLES 2012 0654/23/O/N/12

(c) After pollination, seeds are produced. A student set up an experiment to investigate the conditions needed for the germination of lettuce seeds.

For Examiner's Use

He placed five lettuce seeds on cotton wool in each of five test-tubes. Fig. 1.2 shows the conditions present in each tube.

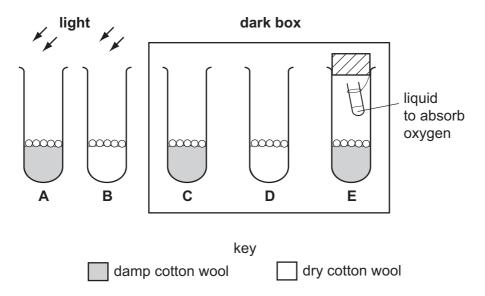


Fig. 1.2

Table 1.1 shows his results.

Table 1.1

tube		conditions	number of seeds that germinated	
Α	water	oxygen	light	5
В	no water	oxygen	light	0
С				5
D				0
E				0

have been done for you.	;]
What conclusions can the student make from these results?	
	•
[3]	i

2

The air	is a mixture of gases which includes nitrogen and oxygen.
(a) (i)	State the percentage of nitrogen in the air. [1]
(ii)	Air is drawn into car engines where some of the nitrogen and oxygen combine to form oxides of nitrogen.
	Use the examples of air and oxides of nitrogen to state two differences between a mixture and a compound.
	1
	2
	[2]
(iii)	Oxides of nitrogen in the exhaust (waste) gases from car engines cause air pollution.
	Name one other gaseous oxide in car exhaust gases which is poisonous to humans if it is inhaled.
	[1]
(b) Niti	rogen gas in the air exists as molecules which have the formula, N_2 .
	en magnesium burns in air a white solid is formed. This white solid contains gnesium oxide, MgO, and magnesium nitride, Mg_3N_2 .
(i)	Name the type of chemical bonding in nitrogen and in magnesium nitride.
	nitrogen
	magnesium nitride [2]
(ii)	Explain your answers to (i).
	[2]
(iii)	State what is shown by the chemical formula of magnesium nitride, Mg_3N_2 .
	[1]

© UCLES 2012 0654/23/O/N/12

(c) A student carries out a test on a sample of ammonium sulfate as shown in Fig. 2.1.

For Examiner's Use

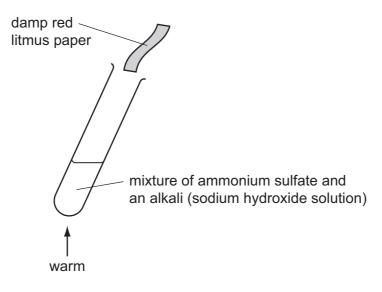


Fig. 2.1

Describe and explain the change in colour of the damp red litmus paper.						
	[2]					

3 (a) Fig. 3.1 shows two speed/time graphs for a car.

For Examiner's Use

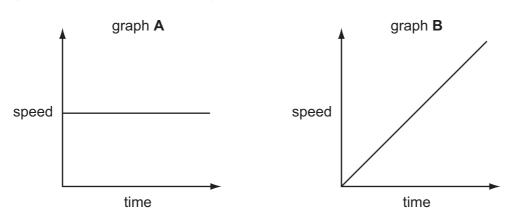


Fig. 3.1

Describe the motion of the car in

graph A ,	
graph B .	[2]

(b) The car travels at 20 m/s for 90 seconds.

Calculate the distance covered.

State the formula that you use and show your working.

formula used

working

m [2]

(c)	One	One of the car's headlamps has a current of 2A, when the voltage across it is 12V.							
	(i)	Show that the resistance of the headlamp is 6Ω .							
		State the formula that you use and show your working.							
		formula used							
		working							
			[2]						
	(ii)	The car has two of these identical headlamps connected in series .							
		Calculate the total resistance of these two headlamps.							
		State the formula that you use and show your working.							
		formula used							
		working							
		Ω	[2]						

Bats use echo location to detect objects around them. To do this, they emit ultrasound.
(a) (i) Ultrasound is sound that has a frequency too high for a human to hear.
Suggest a frequency for the ultrasound emitted by bats. [1]
(ii) Underline the word or words that correctly describe an ultrasound wave.
electromagnetic longitudinal transverse [1]

(b) Most bats drink by flying close to the surface of a pond and taking mouthfuls of water from it.

Researchers thought that bats may be able to tell where water is present because the water has a much smoother surface than the surrounding ground. They put several thirsty bats into a closed room. They placed sheets of two rough materials and two smooth materials on the floor.

rough materials	smooth materials			
metal grid	metal sheet			
tree bark	smooth wood			

The researchers counted the number of times the bats tried to drink from the surface of each material. Their results are shown in Fig. 4.1.

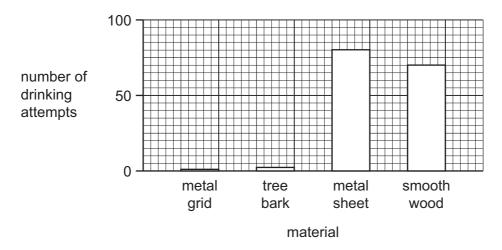
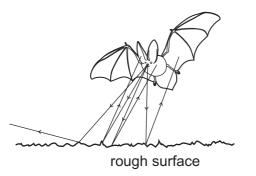


Fig. 4.1


(i)	Compare the results for the rough materials and the smooth materials.

© UCLES 2012 0654/23/O/N/12

(ii) The ultrasound waves reflect from surfaces and are detected by receptors in the bat's head.

For Examiner's Use

Fig. 4.2 shows how ultrasound waves are reflected from a rough surface and from a smooth surface. The arrows show the direction in which the sound waves travel.

smooth surface

Fig. 4.2

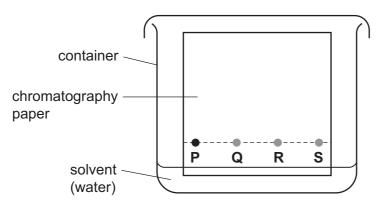
Use the surface.	informati	on in F	Fig. 4.1	and F	ig. 4.2 t	o sugges	how	bats	detect	a v	water
•••••											
											[2]

(c)		any bats feed on moths. Tiger moths have reflex actions that help them to escape om bats.					
		tiger moth has two simple 'ear urone produces nerve impulses					
	This cate	is causes the moth to fly in rapitch.	d zig-zags, which makes	it more difficult for the bat to			
	(i)	What is the stimulus for this r	eflex action?	[1]			
	(ii)	The path taken by a nerve impulse in a reflex action in a tiger moth is similar to that in a human.					
		Fig. 4.3 shows three neurons	involved in the reflex action	on.			
		A	В	С			
		Which neurone, A , B or C	Fig. 4.3				
		is a sensory neurone,					
		carries the nerve impulse to t	ne moth's flight muscles?	[2]			
	(iii)	Some tiger moths do not sho	w this reflex action.				
		Explain why these moths are	less likely to pass their ge	nes to the next generation.			

[2]

Please turn over for Question 5.

5 (a) In many countries, river water is collected and treated to make it safe for humans to drink


For Examiner's Use

State and explain which **two** of the processes shown below are used to treat river water so that it becomes safe to drink.

chlorination crystallisation filtration evaporation

first process	
reason why this process is carried out	
second process	
reason why this process is carried out	
	[4

(b) Fig. 5.1 shows chromatography being used by a student to investigate mixtures of dyes (coloured compounds) used to colour sweets.

key

- **Q**, **R**, **S** dyes extracted from three sweets
 - P mixture of common food dyes

Fig. 5.1

Fig. 5.2 shows the appearance of the chromatography paper after several minutes.

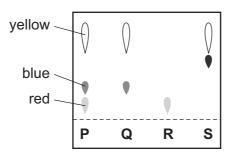


Fig. 5.2

(i)	Deduce and explain the colour of the sweet which contains only one dye.
	colour
	explanation
	[2]
(ii)	State which sweet contained a dye which was ${f not}$ one of the food dyes in the mixture ${f P}$.
	[1]
(iii)	Explain one reason why companies that make food dyes must ensure that their products are pure.
	[1]
	1'1

6 (a) Fig. 6.1 shows a washing machine.

For Examiner's Use

Fig. 6.1

Complete the sentence below using **two** of the words in the list.

		heat	kinetic	light	potential	sound	
	Αw	ashing machine	e is designed to	transform e	lectrical energy	into	
			energy ar	nd		energy.	[2]
(b)	(i)	Some of the w	ater inside the w	ashing mad	chine evaporates	S.	
		Explain the pro	ocess of evapora	ation in term	s of particles.		
							[2]
	(ii)	Explain why ev	vaporation has a	cooling effe	ect.		
							[1]

(c)	The casing of the washing machine is a solid. The water used in it is a liquid.
	Complete the diagrams below to show the arrangement of particles in a solid and in a liquid.
	solid
	[2]
(d)	Before buying a washing machine, a person may research several types to find out which washing machine has the greatest energy efficiency. Explain the meaning of the term <i>efficiency</i> .
	[1]

7

(a) Fig. 7.1 shows two human teeth. Α В Fig. 7.1 (i) Name the **two** types of teeth shown in Fig. 7.1. tooth A tooth B [2] (ii) Explain how tooth **B** helps to digest a food such as bread. (b) For each part of the digestive system in the list below, tick (✓) the correct function or functions. ingestion digestion absorption part mouth stomach small intestine [3]

(c)	Starch is a carbohydrate found in many foods that come from plants. Starch molecules are very large, and must be broken down into smaller sugar molecules before they can be absorbed.
	(i) Name the enzyme in the human digestive system that breaks down starch molecules.
	[1]
	ii) State one place in the human digestive system where this enzyme is secreted.
	[1]
(d)	Glucose molecules, formed from the digestion of starch, are absorbed from the digestive system into the blood. The blood carries the glucose to the liver.
	Describe what happens to the glucose when it reaches the liver if the concentration of glucose in the blood is too high.
	[2]

8			copper is a very important material that has been extracted from copper nds for thousands of years.
	(a)	(i)	The wires used in many electrical devices are made from copper.
			State the two properties of metals such as copper, that make them suitable for making electrical wires.
			1
			2[2]
		(ii)	Copper wires are connected to the mains electrical supply using brass plugs. Brass is an alloy.
			brass plug copper wire
			Explain the meaning of the term <i>alloy</i> and state one difference in the physical properties of brass compared to copper.
			meaning of alloy
			difference in physical property
			[2]
	((iii)	One of the processes used in the extraction of copper involves heating $copper(I)$ sulfide in air.
			One of the reactions that occurs is between $copper(I)$ sulfide and oxygen. This reaction also produces sulfur dioxide.
			Construct the word chemical equation for this reaction.

(b) Copper may also be formed by the electrolysis of an aqueous solution of copper chloride using electrodes made of graphite (carbon).

For Examiner's Use

Fig. 8.1 shows a laboratory apparatus a student used to carry out this electrolysis reaction.

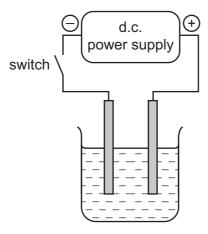


Fig. 8.1

(i)	Name the electrolyte in this electrolysis reaction.	
		[1]
(ii)	Name the product formed and describe what is observed at the surface of each electrode when an electric current is passing through the circuit.	ach
	positive electrode	
	product	
	observation	
	negative electrode	
	product	
	observation	[4]

9 (a)	X-rays and γ (gamma) -rays are two ex	amples of ionising radiation.	
	Explain the meaning of the term ionisin	g radiation.	
			[2]
(b)	A radiographer uses X-rays to see the procedure many times each day.	e bones in a patient's body. She c	arries out this
	The radiographer goes behind a screen	n before switching on the X-ray ma	chine.
	Explain why she does this.		
			[2]
(c)	Draw three straight lines to link each to property in the right hand column.	type of radiation in the left hand c	olumn with its
		not dangerous	
	α (alpha)		
	β (beta)	stopped by paper	
	p (som)	least ionising	
	γ (gamma)		
		travels up to 1 metre in air	

© UCLES 2012 0654/23/O/N/12

(d)	Use words from the list to complete the sentences below.								
	electrons	energy	nuclear	nuclei	radioactive				
	In alike uranium are split								
		·			[3]				
(e)	Generators are used	to produce ele	ectricity in power	stations.					
	Explain how energy station.	from a named	fossil fuel is trar	nsferred to the	generator in a power				
					[3]				

10 Fig. 10.1 shows a plant growing in soil.

Fig. 10.1

- (a) (i) On Fig. 10.1, use a label line and the letter **A** to indicate the part of the plant that absorbs water. [1]
 - (ii) On Fig. 10.1, use a label line and the letter **L** to indicate the part of the plant from which most water vapour is lost to the air. [1]
 - (iii) Name the vessels through which water travels up the plant.

[1	1	
 -	-	١

(b)		es lose lar many tree	•							r. This car	n help to	produce	rain. If
	-	lain how ironment.	trees	can	also	help	to	reduce	the	following	harmful	effects	on the
	(i)	soil erosid	on										
					•••••								
													[2]
	(ii)	global wa	rming										
					•••••			•••••					

			24
11			occurs naturally as the free element and also combined in an extremely large of different compounds.
	(a)	An is	sotope of carbon has a nucleon (mass) number of 14.
		State	e the numbers of protons, neutrons and electrons in one atom of this isotope.
		prote	ons
		neut	rons
		elec	trons [3]
	(b)	com	oleum (crude oil) is a raw material which contains many different carbon pounds. Some of these compounds are separated from petroleum to produce bline which is used as a fuel.
			petroleum (crude oil)
			State two ways in which the properties of petroleum differ from the properties of gasoline.
			1
			2[2]
			The extraction of gasoline from petroleum includes the process of fractional distillation.
			Explain whether fractional distillation involves physical or chemical changes.
			type of change

explanation

[1]

(iii) Fig. 11.1 shows a typical molecule in gasoline.

		H—C—H 			
		 H			
	Fig. 11.1				
		Explain whether this is an example of a saturated or an unsaturated molecule.			
		[1]			
	(iv)	A small amount of the compound made of the molecules in Fig. 11.1 was shaken with an orange-coloured solution of bromine.			
		State and explain briefly what effect, if any, this has on the colour of the bromine solution.			
		[2]			
(c)		me car manufacturers are researching the use of alternative fuels to replace soline.			
	One	e possible alternative fuel is hydrogen gas, H ₂ .			
	Нус	drogen burns in air according to the equation			
		$2H_2 + O_2 \longrightarrow 2H_2O$			
		plain why air pollution caused by car engines would be greatly reduced if hydrogen ald be used as the fuel instead of gasoline.			
		[2]			

12 (a) Complete Table 12.1 to show the circuit symbol for each of the named components.

For Examiner's Use

Table 12.1

component	symbol
ammeter	
fuse	
variable resistor	

[3]

(b) Fig. 12.1 shows an electrical circuit for a torch (flashlight).

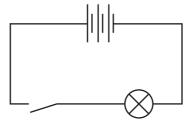


Fig. 12.1

(i)	How many cells are fitted in the torch?		[1]	
-----	---	--	-----	--

(ii) A voltmeter is used to check the voltage across the light bulb.

Draw the symbol for the voltmeter in the correct position on the circuit. [1]

(c) A single ray of light from a torch is shone onto a mirror as shown in Fig. 12.2.

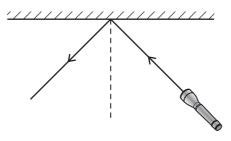


Fig. 12.2

- (i) On Fig. 12.2 label the angle of incidence and angle of reflection. [1]
- (ii) The angle of incidence = 45°.

Write down the value of the angle of reflection. [1]

(d) A ray of white light from the torch is now passed into a glass prism.

This is shown in Fig. 12.3.

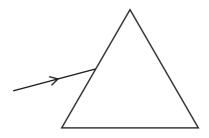


Fig. 12.3

Complete the diagram to show what happens to the light as it passes through and out of the prism. [2]

DATA SHEET
The Periodic Table of the Elements

Group	0	Heium Heium	20 Neon 10 Neon 40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Ra Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	\		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine 35	127 I Iodine	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	>		16 Oxygen 8 32 S	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>		14 Nitrogen 7 31 Phosphorus 15	75 As Arsenic 33	Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium
	≥		12 Carbon 6 Silicon 14 Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	ES Einsteinium 99
	≡		11 B Boron 5 27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium 81		162 Dy Dysprosium 66	Cf Californium 98
				65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 C Copper 29	108 Ag Silver 47	197 Au Gold		Gd Gadolinium 64	Cm Curium 96
				59 N ickel 28	Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
			,	59 Co Cobalt 27	Rh Rhodium 45	192 Ir Iridium 77		Sm Samarium 62	Pu Plutonium
		T Hydrogen		56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93
				Manganese	Tc Technetium 43	186 Re Rhenium		144 Nd Neodymium 60	Uranium
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Nb Niobium 41	Tantalum		140 Ce	232 Th Thorium
				48 T Titanium 22	2r Zirconium 40	178 Hf Hafnium * 72		ı	mic mass nbol mic) number
				45 Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 ,	227 AC Actinium †	d series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllum 4 24 Magnesium 12	40 Ca Calcium	Strontium 38	137 Ba Barium 56	226 Rad Radium	*58-71 Lanthanoid series 190-103 Actinoid series	« × □
	-		7 Lithium 3 23 Na Sodium 11	39 Kanasaium Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L 190-103	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.