CANDIDATE
NAME

CENTRE NUMBER

CANDIDATE NUMBER

COMBINED SCIENCE

0653/21
Paper 2 (Core)
October/November 2012

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 18 printed pages and $\mathbf{2}$ blank pages.

1 (a) Complete Table 1.1 by choosing one of the words from the list to match each statement.

ammeter	ampere	electron	insulator
ohm	volt	voltmeter	watt

Table 1.1

statement	word
a particle with a negative electrical charge	
an instrument that measures electrical current	
the unit of potential difference	
a material that does not conduct electricity	

(b) Fig. 1.1 shows two circuits, \mathbf{A} and \mathbf{B}. All the lamps and both cells are the same.

Fig. 1.1
(i) One lamp is unscrewed from circuit \mathbf{A}.

State what happens to the other lamp.
Explain your answer.
\qquad
\qquad
\qquad
b) 1.1 shows two circuits, A and .
(ii) Explain why lights in a house are connected as in circuit \mathbf{B} and not as in circuit \mathbf{A}.
\qquad
\qquad
\qquad
(iii) The resistance of each lamp is 1.2Ω.

Calculate the combined resistance of the two lamps in circuit \mathbf{A}.
State the formula that you use and show your working.
formula used
working

2 (a) Fig. 2.1 shows part of the carbon cycle.

Fig. 2.1
(i) State the letter that represents photosynthesis in Fig. 2.1.
(ii) State the three letters that represent respiration in Fig. 2.1.
\qquad
\qquad
(iii) Name one carbon-containing compound in plants.
(iv) State the approximate percentage of carbon dioxide in the air.
(b) (i) Earthworms play an important part in the carbon cycle. They eat leaves, and egest material containing plant nutrients into the soil.

Explain the meaning of the term egest.
\qquad
\qquad
\qquad
(ii) Underline the two words that describe the position of an earthworm in a food chain.

```
carnivore
consumer
herbivore
producer
```

(iii) Fishermen catch large numbers of earthworms to use as bait.

There are concerns that too many earthworms are being collected.
Suggest why it is important to conserve earthworms.
\qquad
\qquad
\qquad

3 (a) Fig. 3.1 shows how a digital pH meter is used to measure the pH of some liquids.

Fig. 3.1
(i) Complete Table 3.1 by suggesting suitable pH values for the different liquids.

liquid	$\mathbf{p H}$
pure water	
sodium hydroxide solution	
dilute sulfuric acid	

(ii) Suggest one advantage of using a digital pH meter rather than a piece of litmus paper to compare the acidity of two different acid solutions.
\qquad
\qquad
\qquad
(b) Describe how a student could use a solution of acidified silver nitrate to find out whether or not an unlabelled solution contains sodium chloride.
\qquad
\qquad
\qquad

Table 3.1

(c) When a reactive metal is added to a dilute acid, the metal reacts and dissolves and a gas is given off.
(i) Name one reactive metal that must not be added to a dilute acid.

Explain why this metal should not be added to acid.
metal \qquad
explanation \qquad
\qquad
(ii) Fig. 3.2 shows how a student tested the gas given off when magnesium was added to dilute hydrochloric acid.

Fig. 3.2
State and explain what the student observed when he carried out this test.
observation \qquad
explanation

4 An athlete competes in the high jump.

(a) Describe the energy changes that take place between the athlete taking off and landing after the high jump.
\qquad
\qquad
\qquad
(b) After jumping, the athlete is sweating.
(i) Describe, in terms of particles, how evaporation occurs from the surface of a liquid.
\qquad
\qquad
\qquad
(ii) Explain how this process will cool down the athlete.
\qquad
\qquad
\qquad

Please turn over for Question 5.

5 Table 5.1 shows some of the nutrients contained in 100 g of five foods.
Table 5.1

food	nutrients			
	sugar/g	starch/g	protein/g	fat/g
A	0	0	13	10
B	14	6	7	0
C	0	0	14	6
D	6	8	12	14
E	9	14	3	0

(a) (i) Which two nutrients listed in Table 5.1 are carbohydrates?
and
(ii) Which nutrient listed in Table 5.1 contains nitrogen atoms in its molecules?
(iii) State the letters of two foods in Table 5.1 that could have come from animals.
\qquad
(iv) State the letter of one food that would appear orange-brown when tested with iodine solution, and give a purple colour when tested with biuret reagent.
(v) State the letter of the food that provides the most energy per 100 g .
(b) Table 5.1 does not contain information about vitamins or minerals.

Outline the symptoms that a person may develop if their diet is deficient in
(i) vitamin D , \qquad
\qquad
(ii) iron. \qquad
\qquad
(c) Explain why eating a lot of foods containing sugar can increase the risk of tooth decay.
\qquad
\qquad
\qquad
\qquad

6 Some types of firework are made by filling a cardboard tube with firework mixture. Firework mixture is made from several solid substances which have been powdered and mixed together.

Fig. 6.1 shows a typical firework.

Fig. 6.1

When the paper fuse is lit, exothermic chemical reactions occur inside the firework.
(a) (i) State two forms of energy that are released when the firework mixture reacts.

1 \qquad

2
(ii) State the effect on the rate of reaction of using firework mixture in the form of a powder.
\qquad
(b) Some firework mixtures contain aluminium which is oxidised when the firework is lit.

Table 6.1 shows the numbers of protons and electrons in four particles, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, which are involved in the oxidation of aluminium.

Table 6.1

particle	number of protons	number of electrons
A	8	10
B	13	13
C	8	8
D	13	10

(i) Atoms of the element aluminium have the proton number 13.

State and explain which particle, B or \mathbf{D}, in Table 6.1 is an atom of aluminium. particle explanation \qquad
\qquad
(ii) State and explain which two particles in Table 6.1 could be found bonded together in aluminium oxide.
particles \qquad and \qquad explanation \qquad
\qquad
(c) Firework mixtures contain the compound potassium perchlorate, KClO_{4}.

When potassium perchlorate is heated, a colourless gas is given off which re-lights a glowing splint.
(i) State the name of this gas.
(ii) Suggest how potassium perchlorate in the firework mixture helps the mixture to burn.
\qquad
\qquad
\qquad
\qquad

7 (a) On the grid below, draw a wave with an amplitude of 2 cm and a wavelength of 4 cm . On your diagram, clearly label the amplitude and the wavelength.

(b) (i) Two sound waves, \mathbf{A} and \mathbf{B}, have the same frequency. \mathbf{A} has a greater amplitude than \mathbf{B}.

What difference would you hear?
\qquad
(ii) Two sound waves, \mathbf{X} and \mathbf{Y}, have the same amplitude. \mathbf{X} has a greater frequency than \mathbf{Y}.

What difference would you hear?
\qquad
(c) Energy travels to the Earth from the Sun.

State whether this transfer of energy is by conduction, convection or radiation.
Explain your answer.
\qquad
\qquad

8 Fig. 8.1 shows the male reproductive system.

Fig. 8.1
(a) (i) Name parts C and D.

C
D
(ii) State the functions of parts \mathbf{A} and \mathbf{B}.

A
B
(iii) On Fig. 8.1, use a label line and the letter \mathbf{S} to indicate where male gametes are made.
(b) The human immunodeficiency virus (HIV) can be transmitted during sexual intercourse. Outline two other ways in which HIV can be transmitted.

1
\qquad
2 \qquad

9 Chlorine is released when hydrochloric acid reacts with the compound, manganese dioxide.
(a) (i) Explain why chlorine is an example of an element and not a compound.
\qquad
\qquad
\qquad
\qquad
(ii) Describe a safe test for chlorine gas.
\qquad
\qquad
(b) Chlorine is produced in the chemical industry by electrolysis.

A simplified diagram of the apparatus used to produce chlorine is shown in Fig. 9.1.

Fig. 9.1
(i) State the meaning of the term anode.
\qquad
\qquad
(ii) A student knows that compound \mathbf{X} in Fig. 9.1 is either sodium hydroxide, NaOH , or sodium chloride, NaCl .

Using information from Fig. 9.1, deduce whether compound \mathbf{X} is sodium hydroxide or sodium chloride.

Explain your answer.
X is
explanation \qquad
\qquad
(c) Chlorine is found in Group 7 of the Periodic Table. Two of the other elements in Group 7 are bromine and iodine.
(i) Chlorine is a gas at room temperature.

What are the physical states of bromine and iodine at room temperature?
bromine
iodine
(ii) Explain briefly why a solution of sodium bromide turns orange when chlorine is bubbled through it.
\qquad
\qquad

BLANK PAGE

BLANK PAGE
DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

