

730

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER
COMBINED SC	0653/23
Paper 2 (Core)	October/November 2012
	1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of 20 printed pages.

1 Flowers are organs in which sexual reproduction takes place. For Examiner's Use (a) (i) Complete the definition of sexual reproduction. Use words from the list. dissimilar female haploid identical ovary sperm zygote Sexual reproduction is the process involving the fusion of nuclei to form a diploid and the production of genetically offspring. [3] (ii) State the scientific term for the fusion of two nuclei. [1] (b) Fig. 1.1 shows a section through a flower. В D. Fig. 1.1 (i) Name the parts labelled A and B. Α [2] В _____ (ii) State the letter of the part in which the male gametes are produced, a zygote is produced. [2]

(c) After pollination, seeds are produced. A student set up an experiment to investigate the conditions needed for the germination of lettuce seeds.

He placed five lettuce seeds on cotton wool in each of five test-tubes. Fig. 1.2 shows the conditions present in each tube.

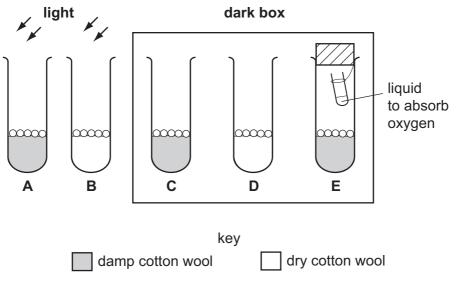


Table 1.1 shows his results.

Table	1	.1
-------	---	----

tube	conditions			number of seeds that germinated
Α	water	oxygen	light	5
В	no water	oxygen	light	0
С				5
D				0
E				0

- (i) Complete Table 1.1 to show the conditions present in each tube. Tubes A and B have been done for you. [2]
- (ii) What conclusions can the student make from these results?

[3]

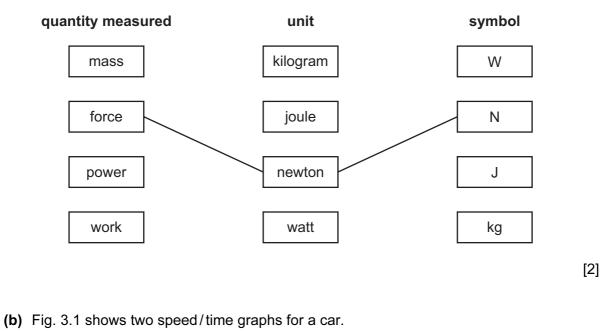
For Examiner's Use

(a) (i) State the percentages of nitrogen and oxygen in the air. 2 Examiner's Use nitrogen [2] oxygen (ii) During a thunderstorm, energy from lightning causes nitrogen and oxygen to combine to form nitric oxide. Explain why nitrogen is an example of an *element* and nitric oxide is an example of a compound. [2] (iii) Nitric oxide has the chemical formula, NO. Explain what is meant by this formula.[2] (iv) What name is given to the type of chemical reaction that occurs when oxygen bonds to another element?[1] (b) When magnesium burns in air, a white solid is formed. This white solid contains magnesium oxide, MgO. (i) Name the type of chemical bonding in magnesium oxide. Explain your answer. type of chemical bonding explanation [2]

For

(ii) A student burned some magnesium in air and then added the white solid formed to water. Examiner's

She tested the solution with Universal (full range) Indicator and found that the pH was 9.


State a conclusion that the student can draw from this observation.

.....[1] For

Use

3 (a) Draw lines to connect each quantity measured to its correct unit and symbol.

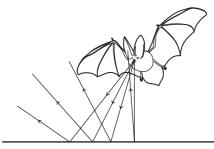
One has been done for you.

speed graph A graph B graph B

Describe the motion of the car in graph **A**, ______________________________[2]

For Examiner's Use

(c)	The	e car travels at 20 m/s for 90 seconds.		For
	Cal	culate the distance covered.		Examiner's Use
	Sta	te the formula that you use and show your working.		
		formula used		
		working		
		m	[2]	
(d)	On	e of the car's headlamps has a current of 2A, when the voltage across it is 12V.		
	(i)	Show that the resistance of the headlamp is 6Ω .		
		State the formula that you use and show your working.		
		formula used		
		working		
			[2]	
	(ii)	The car has two of these identical headlamps connected in series.		
		Calculate the total resistance of these two headlamps.		
		State the formula that you use and show your working.		
		formula used		
		working		
		Ω	[2]	


4	Many bats are predators that fly at night. They eat moths and other insects.					For Examiner's Use		
	(a) Underline the two words that describe the position of a bat in a food chain.							
	C	arnivore	consumer	herbivore	producer		[1]	
		s emit ultrasound		upper too bigh for	a human ta haar			
	 (i) Ultrasound is sound that has a frequency too high for a human to hear. Suggest a frequency for the ultrasound emitted by bats. 			Hz	[1]			
	(ii) Underline the one word that correctly describes an ultrasound wave.							
		electroma	agnetic lon	gitudinal	transverse		[1]	

(c) Bats use echo location to detect objects around them.

The reflected ultrasound waves are detected by special cells in the bat's head.

Fig. 4.1 shows how ultrasound waves are reflected from a rough surface and from a smooth surface. The arrows show the direction in which the sound waves travel.

rough surface

smooth surface

Fig. 4.1

(i) Use the information in Fig. 4.1 to describe what happens to the ultrasound waves when they hit

a rough surface,	
a smooth surface.	
	[1]

(ii) Suggest how the bat can tell if it is flying over a rough surface or a smooth surface, even when it is completely dark.
[1]
(d) Many kinds of bat live in trees in forests.
List three ways in which deforestation can damage the environment.
1
2
3
[3]

For

Examiner's Use 5 (a) In many countries, river water is collected and treated to make it safe for humans to For drink. Examiner's Use State and explain which two of the processes shown below are used to treat river water so that it becomes safe to drink. chlorination crystallisation filtration evaporation first process reason why this process is carried out second process reason why this process is carried out [4]

(b) Fig. 5.1 shows chromatography being used by a student to investigate mixtures of dyes (coloured compounds) used to colour sweets.

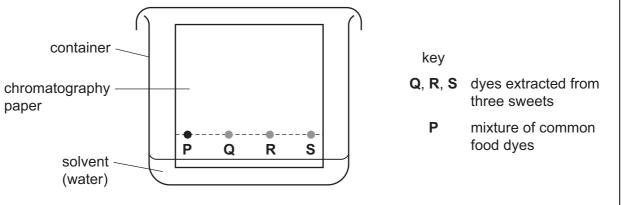
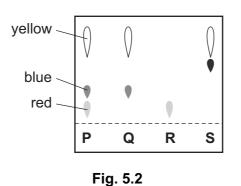
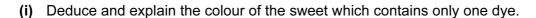




Fig. 5.2 shows the appearance of the chromatography paper after several minutes.

	colour	
	explanation	
		[2]
(ii)	State which the mixture	sweet contained a dye which was not one of the common food dyes in P .

[1]

For

Examiner's Use

For Examiner's

Use

6 (a) Fig. 6.1 shows a washing machine.

Complete the sentence below using $\ensuremath{\textit{two}}$ of the words in the list.

	heat	kinetic	light	potential	sound	
Av	vashing machine	e is designed to	transform ele	ectrical energy into		
		ener	gy and		energy.	[2]
(b) (i)	Some of the wa	ater inside the v	vashing mach	nine evaporates.		
	Explain the pro	cess of evapora	ation in terms	of particles.		
						[2]
(ii)	Explain why ev	aporation has a	a cooling effe	ct.		
						[1]

(c) The casing of the washing machine is a solid. The water used in it is a liquid.

Complete the diagrams below to show the arrangement of particles in a solid and in a liquid.

solid liquid

[2]

For Examiner's Use

(d) Before buying a washing machine, a person may research several types to find out which washing machine has the greatest energy efficiency.

Explain the meaning of the term efficiency.

[1]

7 (a) Fig. 7.1 shows two human teeth.

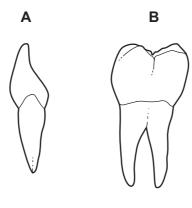


Fig. 7.1

(i) Name the **two** types of teeth shown in Fig. 7.1.

tooth A ______

(ii) Explain how tooth **B** helps to digest a food such as bread.

[2]

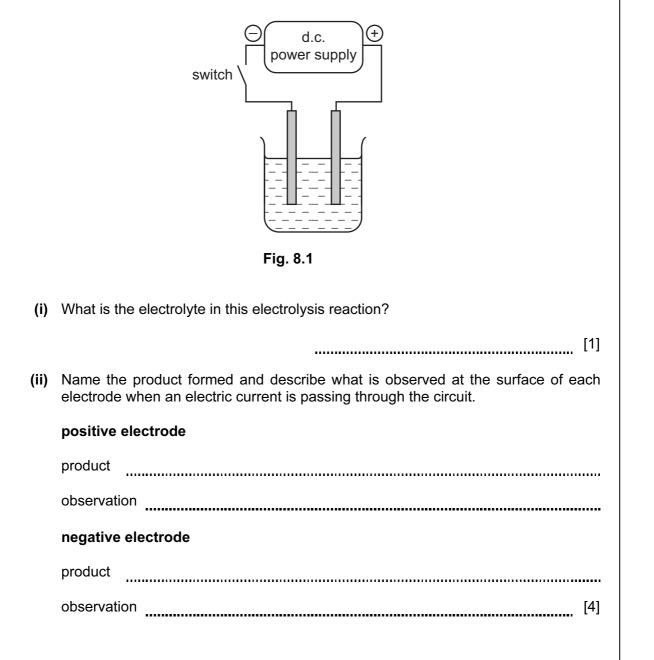
(b) For each part of the digestive system in the list below, tick (✓) the correct function or functions.

part	ingestion	digestion	absorption
mouth			
stomach			
small intestine			

[3]

[2]

For Examiner's Use Please turn over for Question 8.


15

Metallic copper is a very important material that has been extracted from copper 8 For compounds for thousands of years. Examiner's Use (a) (i) The wires used in many electrical devices are made from copper. State the two properties of metals such as copper, that make them suitable for making electrical wires. 1 [2] 2 (ii) Copper wires are connected to the mains electrical supply using brass plugs. Brass is an alloy. copper wire brass plug -Explain the meaning of the term alloy and state one difference in the physical properties of brass compared to copper. meaning of alloy difference in physical property [2] (iii) One of the processes used in the extraction of copper involves heating copper(I) sulfide in air. One of the reactions that occurs is between copper(I) sulfide and oxygen. This reaction also produces sulfur dioxide. Construct the word chemical equation for this reaction.[1]

(b) Copper may also be formed by the electrolysis of an aqueous solution of copper chloride using electrodes made of graphite (carbon).

For Examiner's Use

Fig. 8.1 shows a laboratory apparatus a student used to carry out this electrolysis reaction.

9 (a) Complete Table 9.1 to show the circuit symbol for each of the named components.

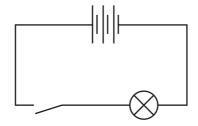
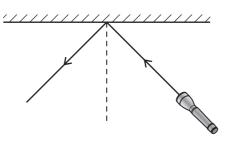

component	symbol
ammeter	
fuse	
variable resistor	

Table 9.1

For Examiner's Use

[3]


(b) Fig. 9.1 shows an electrical circuit for a torch (flashlight).

(i)	How many cells are fitted in the torch?	[1]
(ii)	A voltmeter is used to check the voltage across the light bulb.	
	Draw the symbol for the voltmeter in the correct position on the circuit.	[1]

(c) A single ray of light from a torch is shone onto a mirror as shown in Fig. 9.2.

- (i) On Fig. 9.2, label the angle of incidence and angle of reflection.
- (ii) The angle of incidence = 45° .

Write down the value of the angle of reflection.

For Examiner's Use

[1]

[1]

.....

	0	⁴ He	Helium 2	20	Ne	Neon 10	40	Ar	Argon 18	84	Kr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86			175	Lu	Lutetium 71		۲	Lawrencium 103	
Group				19	Ľ	Fluorine 9	35.5	Cl	Chlorine 17	80	Ŗ	Bromine 35	127	н	lodine 53		At	Astatine 85			173	Υb	Ytterbium 70		No	Nobelium	
	>			16	0	Oxygen 8	32	S	Sulfur 16	79	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84			169	Tm	Thulium 69		Md	Mendelevium	
	>		-		14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83			167	ц	Erbium 68		Еm	Fermium 100
	≥			12	с С	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82			165	Ч	Holmium 67		Es	Einsteinium aa	
	≡			5	ß	Boron 5	27	١V	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	11	Thallium 81			162	Dy	Dysprosium 66		ç	Californium QR	
											Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80			159	Tb	Terbium 65			Berkelium 97	
										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			157	Gd	Gadolinium 64		Cm	Curium GG	
										59	ïZ	Nickel 28	106	Pd	Palladium 46	195	F	Platinum 78			152	Eu	Europium 63		Am	Americium	
										59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	ŗ	Iridium 77			150	Sm	Samarium 62			Plutonium 0.4	
		- I	Hydrogen 1							56	Fe	lron 26	101	Ru	Ruthenium 44	190	0s	Osmium 76					Promethium 61		Np	Neptunium	
										55	Mn	Manganese 25		Ц	Technetium 43	186	Re	Rhenium 75			144		Neodymium 60	238		Uranium	
										52	ບັ	Chromium 24	96	Мо	Molybdenum 42	184	≥	Tungsten 74			141	Pr	Praseodymium 59		Ра	Protactinium 01	
										51	>	Vanadium 23	93	qN	Niobium 41	181	Та	Tantalum 73			140	Ce	Cerium 58	232	Ч	Thorium	
										48	F	Titanium 22	91	Zr	Zirconium 40	178	Ηf	Hafnium 72			_			nic mass	pol	nic) number	
										45	Sc	Scandium 21	89	≻	Yttrium 39	139	La	Lanthanum 57 *	227	Ac Actinium 89	*58-71 Lanthanoid corioc	eries	2222	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number	
		1				m	24	Mg	nesium	40	Ca	Calcium	88	Sr	Strontium 3	137		Barium	226	Radium Radium	pioned	190-113 Actinoid series	20	 9	×	- P	
	=			б 	Be	Beryllium 4	Ď,	Σ	Magnesium 12			20 C			38			56		88		Acti	2	ŋ	×		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

20