CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

www.PapaCambridge.com MARK SCHEME for the October/November 2014 series

4037 ADDITIONAL MATHEMATICS

4037/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2 Mark Scheme Sy. Cambridge O Level – October/November 2014 403			Mary.
Cambridge O Level – October/November 2014 403 403	Page 2	Mark Scheme	Sy. per
		Cambridge O Level – October/November 2014	403

	1	1	6
1 (a)		B1	Cambridge co.
		B1	
(b)	No.in H only = $50 - x$; No in F only = $60 - x$ Sum: $50 - x + 60 - x + x + 30 - 2x = 98$ x = 14	B1 M1 A1	Both written or on diagram Add at least 3 terms each with <i>x</i> involved and equate to 98 soi
2	$9x^{2} + 2x - 1 < (x + 1)^{2}$ $8x^{2} < 2 \text{ oe isw}$ $-\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1	Expand and collect terms
3	$\log_2(x+3) = \log_2 y + 2 \rightarrow x + 3 = 4y$ $\log_2(x+y) = 3 \rightarrow x + y = 8$ $x+3 = 4(8-x)$ $5x = 29 \rightarrow x = 5.8, \text{ oe}$ $y = 2.2 \text{ oe}$	B1 B1 M1 A1 A1	Eliminate y or x from two linear three term equations

		May .
Page 3	Mark Scheme	Sy. per
	Cambridge O Level – October/November 2014	403
		S. J.

		1	77
4 (i)	$f(37) = 3 \text{ or } gf(x) = \frac{\sqrt{x-1} - 3 - 2}{2(\sqrt{x-1} - 3) - 3}$	B1	Middle con
	$gf(37) = \frac{3-2}{6-3} = \frac{1}{3}$	B1	
(ii)	$y = \sqrt{x-1} - 3 \rightarrow (y+3)^2 = x-1$	M1	Rearrange and square in any order
	$(x+3)^2 + 1 = f^{-1}(x)$ oe isw	A1	Interchange <i>x</i> and <i>y</i> and complete
(iii)	$y = \frac{x-2}{2x-3}$		
	$2xy - 3y = x - 2 \rightarrow 2xy - x = 3y - 2$	M1	Multiply and collect like terms
	$\frac{3x-2}{2x-1} = g^{-1}(x)$ oe	A1	Interchange and complete Mark final answer
5 (i)	B = 900	B1	
(ii)	$B = 500 + 400e^2 = 3455$ or 3456 or 3460	B1	3455.6 scores B0
(iii)	$\left(\frac{\mathrm{d}B}{\mathrm{d}t}\right) = 80\mathrm{e}^{0.2t}$	B1	
	$t = 10 \to \frac{\mathrm{d}B}{\mathrm{d}t} = 80\mathrm{e}^2 = 591 (/\mathrm{day})$	B1	awrt
(iv)	$10000 = 500 + 400e^{0.2t} \rightarrow e^{0.2t} = (23.75)$	M1	$e^{0.2t} = k$
	$0.2t = \ln 23.75$	DM1	take logs: $0.2t = \ln k$
	t = 15.8 (days)	A1	awrt

		m
Page 4	Mark Scheme	Syl
	Cambridge O Level – October/November 2014	403
		Cally

			138
6 (i)	$(x+2)^2 + x^2 = 10$	B1	3 term quadratic with attempt to solve both x or a pair both y or second pair
	$x^{2} + 2x - 3 = 0 \rightarrow (x+3)(x-1) = 0$	M1	3 term quadratic with attempt to solve
	Points (1, 3), (–3, –1) isw	A1 A1	both x or a pair both y or second pair
	or elimination of x leads to $y^2 - 2y - 3 = 0$,	AI	both y or second pair
	then as above		
(ii)	$m^2x^2 + 10mx + 25 + x^2 = 10$	B1	
	$(m^2+1)x^2+10mx+15=0$		
	$b^2 - 4ac = (0) \rightarrow 100m^2 - 60(m^2 + 1) = 0$	M1 A1	attempt to use discriminant on three term quadratic. Allow unsimplified
	$m = \pm \sqrt{\frac{3}{2}}$ oe isw	A1	cao ± is required
	Alternative solution:		
	$\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^2}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$	B1	allow unsimplified
	$\begin{vmatrix} dx & \sqrt{10-x^2} & dx & y \\ \text{Result:} \end{vmatrix}$		
	$y^2 = x^2 + 5y$ after inserted in $y = mx + 5$		
	Attempt to solve with $x^2 + y^2 = 10$	M1	Eliminate x or y
	$y = 2, x = \pm \sqrt{6}$	A1	both
	$m = \pm \frac{3}{\sqrt{6}}$ oe	A1	
7 (i)	$v = 2\cos t + 1$	B1	mark final answer
(ii)	$2\cos t + 1 = 0$	M1	equate their v to zero (must be a
			differential) and attempt to solve to find an angle
	$t = \frac{2\pi}{3}$ or 2.09	A1	awrt
	3		
(iii)	$t = \frac{2\pi}{3} \rightarrow x = 2\sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3} = 3.83 \mathrm{m}$	B1	awrt
	a = 2 ain t	B1ft	ft <i>their</i> v (2 nd differential)
	$t = \frac{2\pi}{3}a = -\sqrt{3} = -\frac{1.73}{4} \text{ ms}^{-2}$	DB1ft	ft using <i>their</i> angle <i>t</i> in correct <i>a</i> awrt
	3 4	DDIII	is doing men angle : in contect a unit
8 (i)	$dy (2+x^2) \times 2x - x^2 \times 2x \qquad 4x$	M1	apply quotient or product rule
	$\frac{dy}{dx} = \frac{(2+x^2) \times 2x - x^2 \times 2x}{(2+x^2)^2} = \frac{4x}{(2+x^2)^2}$	A1	unsimplified
	k=4	A1	<i>k</i> =4 does not need to be specifically
(35)	$\int x \cdot 1 \cdot x^2 \cdot \dots$		identified
(ii)	$\int \frac{x}{(2+x^2)^2} dx = \frac{1}{4} \times \frac{x^2}{2+x^2} + (c) \text{ isw}$	B1 B1	$\frac{1}{their k} \times $ original function
	(- · · ·)		men k

		my
Page 5	Mark Scheme	Syl Sper
	Cambridge O Level – October/November 2014	403
<u>. </u>	-	S

L		1	6
9	$(a+3\sqrt{5})^2 = a^2 + 3\sqrt{5}a + 3\sqrt{5}a + 45$ oe	B1	anywhere (718)
	Equate: $a^2 + a + 45 = 51$ and $6a - b = 0$	B1 B1	anywhere Control of the control of t
	(a+3)(a-2)=0	M1	Attempt to solve three term quadratic with integer coefficients obtained by
	a = -3, 2 b = -18, 12	A1 A1	equating coeffs Both as correct or one correct pair Both bs correct
10 (i)	$\sec x \csc x = \frac{1}{\cos x \sin x}$	B1	anywhere
	$\cot x = \frac{\cos x}{\sin x}$	B1	anywhere
	$LHS = \frac{1 - \cos^2 x}{\cos x \sin x} \text{ oe}$	B1ft	correct addition of their terms
	$= \frac{\sin^2 x}{\cos x \sin x} = \tan x \qquad \text{AG}$	B1	use of identity and cancel
(ii)	$3\cot x - \cot x = \tan x \to 2\cot x = \tan x$	M1	equate and collect like terms, allow sign errors
	$\tan^2 x = 2$ oe x = 54.7, 125.3, 234.7, 305.3	A1 A1	2 values
	λ = 34.7, 123.3, 234.7, 303.3	A1	only 2 more values. awrt
11 (i)	Area of sector = $\frac{1}{2} \times x^2 \times 0.8 \left(= 0.4x^2 \text{ cm}^2 \right)$	B1	anywhere
	$SR = 5\sin 0.8 (= 3.59)$ or	B1	SR may be seen in stated $\frac{1}{2}ab\sin C$
	$OR = 5\cos 0.8 (= 3.48)$		
	Area of triangle =		
	$\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \text{cm}^2$	M1	insert correct terms into correct area
	$0.08x^2 = 6.247$	A1	formulae
	$x = 8.837 \mathrm{cm}$ AG	A1	
(ii)	$SQ = 8.84 - 5 (= 3.84 \mathrm{cm})$		
	$PR = 8.84 - 5\cos 0.8 = 5.35 \text{ or } 5.36\text{ cm}$	B 1	two lengths from SQ, PR, PQ awrt
	$PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$	B1	third length awrt
	Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9	B1	sum
(iii)	Area $PQSR = 4 \times 6.247$	M1	
	$=25\mathrm{cm}^2$	A1	24.95 to 25

Page 6	Mark Scheme	Syl
	Cambridge O Level – October/November 2014	403
		5

12 (i)	$f(2) = 3(2^3) - 14(2^2) + 32 = 0$ Or complete long division	B1	ambridge
(ii)	$f(x) = (x-2)(3x^2 - 8x - 16)$	M1 A1 M1	$3x^2$ and 16 8x and correct signs Factorise three term quadratic
	f(x) = (x-2)(x-4)(3x+4)	A1	
(iii)	x = 2, 4	B1	
(iv)	$\int 3x - 14 + \frac{32}{x^2} dx = 1.5x^2 - 14x - \frac{32}{x} (+ c)$	B1 B1	first 2 terms third term correct unsimplified
	Area = $\left[1.5x^2 - 14x - \frac{32}{x}\right]_2^4$ = (-) 2	M1 A1	Limits of 2 and 4 and subtract