

A-level
COMPUTER SCIENCE
(7517/1A/1B/1C/1D/1E)
Paper 1

Mark scheme

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 2 of 44

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the
relevant questions, by a panel of subject teachers. This mark scheme includes any amendments
made at the standardisation events which all associates participate in and is the scheme which
was used by them in this examination. The standardisation process ensures that the mark scheme
covers the students’ responses to questions and that every associate understands and applies it in
the same correct way. As preparation for standardisation each associate analyses a number of
students’ scripts: alternative answers not already covered by the mark scheme are discussed and
legislated for. If, after the standardisation process, associates encounter unusual answers which
have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed
and expanded on the basis of students’ reactions to a particular paper. Assumptions about future
mark schemes on the basis of one year’s document should be avoided; whilst the guiding
principles of assessment remain constant, details will change, depending on the content of a
particular examination paper.

Further copies of this Mark Scheme are available from http://www.aqa.org.uk/

http://www.aqa.org.uk/

 MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

COMPONENT NUMBER: Paper 1

COMPONENT NAME:

STATUS:

DATE: 8 Jan 2015

The following annotation is used in the mark scheme.

; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT - in some questions a specific error made by a candidate, if repeated, could result in the
 loss of more than one mark. The DPT label indicates that this mistake should only
 result in a candidate losing one mark, on the first occasion that the error is made.
 Provided that the answer remains understandable, subsequent marks should be awarded
 as if the error was not being repeated.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 4 of 44

Level of response marking instructions

Level of response mark schemes are broken down into a number of levels, each of which has a
descriptor. The descriptor for the level shows the average performance for the level. There are a
range of marks in each level. The descriptor for the level represents a typical mid-mark
performance in that level.

Before applying the mark scheme to a student’s answer read through the answer and annotate it
(as instructed) to show the qualities that are being looked for. You can then apply the mark
scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer
meets the descriptor for that level. The descriptor for the level indicates the different qualities that
might be seen in the student’s answer for that level. If it meets the lowest level then go to the next
one and decide if it meets this level, and so on, until you have a match between the level descriptor
and the answer. With practice and familiarity you will find that for better answers you will be able to
quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick
holes in small and specific parts of the answer where the student has not performed quite as well
as the rest. If the answer covers different aspects of different levels of the mark scheme you
should use a best fit approach for defining the level and then use the variability of the response to
help decide the mark within the level. ie if the response is predominantly level 3 with a small
amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the
level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The exemplar materials used
during standardisation will help. There will be an answer in the standardising materials which will
correspond with each level of the mark scheme. This answer will have been awarded a mark by
the Lead Examiner. You can compare the student’s answer with the example to determine if it is
the same standard, better or worse than the example. You can then use this to allocate a mark for
the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify
points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 5 of 44

Examiners are required to assign each of the candidates’ responses to the most appropriate level
according to its overall quality, then allocate a single mark within the level. When deciding upon a
mark in a level examiners should bear in mind the relative weightings of the assessment
objectives. This will be exemplified and reinforced as part of examiner training and standardisation.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 6 of 44

Qu Part Marking guidance Total
marks

01 1 Mark is for AO2 (apply)

1 mark: B;

1

01 2 All marks AO2 (analyse)

Nathan was not killed with poison (rule a);
therefore Peter was not in the kitchen (rule c);
therefore Martin was not in the dining room (rule e);
therefore Suzanne was in the dining room (rule b);
therefore Steve murdered Nathan (rule d).

Mark as follows:
1 mark: Any correct point from the list above;
1 mark: Any two further correct points from the list above;

2

02 1 Mark is for AO1 (understanding)

Original state Input New state

S3 0 S4
S3 1 S2

1 mark: Table completed as above
I. order of rows

1

02 2 All marks AO2 (analyse)

(0|1)*((00)|(11))(0|1)*

Mark as follows:
1 mark: (0|1)* at start;
1 mark: (00)|(11);
1 mark: (0|1)* at end;

Or

Alternative answer
(0|1)*(11(0|1)*)|(00(0|1)*)

Mark as follows:
1 mark: (0|1)* at start;
1 mark: (11(0|1)*);
1 mark: |(00(0|1)*) at end;

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 7 of 44

Maximum 2 marks: If final answer not correct.

A any regular expression that correctly defines the language.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 8 of 44

02 3 Mark is for AO2 (apply)

Rule
number
(given in
Figure 2)

Could be defined using a
regular expression

1 Y
2 Y
3 Y
4 N
5 N
6 Y

1 mark: All values in the table have been completed correctly.

1

02 4 1 mark for AO2 (analyse) and 1 mark for AO3 (design)

1 mark for AO2 (analyse): There is no non-recursive / base case;
1 mark for AO3 (design): <word> ::= <char><word>|<char>;

2

03 1 Mark is for AO1 (understanding)

It contains a cycle / cycles;

1

03 2 All marks AO2 (apply)

Vertex (in
Figure 3

Adjacent
vertices

1 2, 3
2 1, 3, 4
3 1, 2, 5
4 2
5 3

Mark as follows:
1 mark: Three correct rows;
1 mark: All rows correct;
I Order of items within each list/row.

2

03 3 All marks AO1 (understanding)

Adjacency list appropriate when there are few edges between
vertices // when graph/matrix is sparse;
when edges rarely changed;
when presence/absence of specific edges does not need to be

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 9 of 44

tested (frequently);

Max 2

A Alternative words which describe edge, eg connection, line

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 10 of 44

03 4 All marks AO2 (apply)

 Cat

NoOfCats A B C 1 2 3 4 5
5 1
 2 1 1
 1 2
 2 2
 3 1 1
 1 2
 2
 1 3
 2
 3 3
 4 1 1
 2
 3
 4 1
 5 1 1
 2
 3
 4
 5 1

Mark as follows:
1 mark: A is set the sequence indicated in the table;
1 mark: B is set the sequence indicated in the table;
1 mark: C is set the sequence indicated in the table;
1 mark: NoOfCats is set to 5, Cat[1] is set to 1;
1 mark: Cat[2] is set to 2 and Cat[3] is set to 3;
1 mark: Cat[4] is set to 1 and Cat[5] is set to 1;

Info for examiner: Ignore the empty cells in the sequences - values do
not need to be set in the rows indicated in the table.

6

03 5 Mark is for AO2 (analyse)

To work out which cats will travel together to the show //
To plan which cats will be in the van on which journey to the cat show //
To colour the vertices of a graph //
To create a decomposition of a graph;

Max 1

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 11 of 44

03 6 All marks AO1 (knowledge)

1 mark (1 from): The problem can be solved // algorithm exists for
problem;
But it cannot be solved in polynomial time // but not quickly
enough to be useful;

Max 2

1 mark: It takes an unreasonable amount of time; to solve;
A Too long time but R Long time

2

03 7 All marks AO1 (understanding)

1 mark: Use of heuristic; algorithm that makes a guess based on
experience;
That provides a close-to-optimal solution/approximation; that only
works in some cases; A non-optimal

Example of heuristic method eg hill-climbing/stochastic/local
improvement/greedy algorithms/simulated annealing/trial and
error/any reasonable example;

1 mark: Relax some of the constraints on the solution; A Solve simpler
version of problem

2

04 1 Mark is for AO1 (understanding)

False;

1

04 2 Mark is for AO1 (understanding)

THEN Failed True;

1

04 3 All marks AO1 (understanding)

L M – 1;

Mark as follows:
1 mark: L;
1 mark: M – 1;

Maximum 1 mark: If not correct

2

04 4 Mark is for AO1 (understanding) 1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 12 of 44

O(kn);

A kn

04 5 Mark is for AO1 (knowledge)

O(log n);
A log n

1

 04 6 Mark is for AO1 (knowledge)

O(1);

A 1

1

04 7 Mark is for AO1 (knowledge)

O(n);

A n

1

04 8 All marks AO1 (understanding)

1 mark: As the size of the list increases the time taken to search for an
item increases; at the same rate; //
1 mark: A linear search looks at each item in the list in turn (until it
reaches the end of the list or the item being searched for is found); so if
there are n items in the list the worst case would be n comparisons;

2

05 1 All marks AO2 (apply)

3 * 4

1

05 2 All marks AO2 (apply)

(12 + 8) * 4;

1

05 3 Mark for AO1 (understanding)

1 mark: Simpler/easier for a machine/computer to evaluate //
simpler/easier to code algorithm
R Simpler/easier to understand
Do not need brackets (to show correct order of evaluation/calculation);
Operators appear in the order required for computation;

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 13 of 44

No need for order of precedence of operators;
No need to backtrack when evaluating;
A RPN expressions cannot be ambiguous as Benefit Of Doubt (BOD)

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 14 of 44

06 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark

Range
4 A line of reasoning has been followed to arrive

at a logically structured working or almost fully
working programmed solution that meets all of
the requirements of Task 1 and some of the
requirements of Task 2. All of the appropriate
design decisions have been taken. To award 12
marks, all of the requirements of both tasks
must be met.

10-12

3 There is evidence that a line of reasoning has
been followed to produce a logically structured
program. The program displays a prompt,
inputs the decimal value and includes a loop,
which might be a definite or indefinite loop. An
attempt has been made to do the integer
division, output the remainder within the loop
and use the result of the division for the next
iteration, although some of this may not work.
The solution demonstrates good design work
as most of the correct design decisions have
been taken. To award 9 marks, all of the
requirements of Task 1 must have been met.

7-9

2 A program has been written and some
appropriate, syntactically correct programming
language statements have been written. There
is evidence that a line of reasoning has been
partially followed as although the program may
not have the required functionality for either
task, it can be seen that the response contains
some of the statements that would be needed
in a working solution to Task 1. There is
evidence of some appropriate design work as
the response recognises at least one
appropriate technique that could be used by a
working solution, regardless of whether this has
been implemented correctly.

4-6

1 A program has been written and a few
appropriate programming language statements
have been written but there is no evidence that
a line of reasoning has been followed to arrive
at a working solution. The statements written
may or may not be syntactically correct. It is
unlikely that any of the key design elements of
the task have been recognised.

1-3

12

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 15 of 44

Guidance

Task 1:

Evidence of AO3 (design) - 3 points:

Evidence of design to look for in responses:

• Identifying that an indefinite loop must be used (as the length of
the input is variable)

• Identifying the correct Boolean condition to terminate the loop
• Correct identification of which commands belong inside and

outside the loop

Note that AO3 (design) points are for selecting appropriate techniques
to use to solve the problem, so should be credited whether the syntax
of programming language statements is correct or not and regardless
of whether the solution works.

Evidence of AO3 (programming) – 6 points:

Evidence of programming to look for in responses:

• Prompt displayed
• Value input by user and stored into a variable with a suitable

name
• Loop structure coded
• Remainder of integer division calculated
• Remainder of integer division output to screen
• Result of integer division calculated and assigned to variable so

that it will be used in the division operation for the next iteration

Note that AO3 (programming) points are for programming and so
should only be awarded for syntactically correct code.

Task 2:

Evidence of AO3 (design) - 1 point:

Evidence of design to look for in responses:

• A sensible method adopted for reversing the output eg
appending to a string or storing into an array

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 16 of 44

Note that AO3 (design) points are for selecting appropriate techniques
to use to solve the problem, so should be credited whether the syntax
of programming language statements is correct or not and regardless
of whether the solution works.

Evidence of AO3 (programming) – 2 points:

Evidence of programming to look for in responses:

• After each iteration remainder digit is stored into array/string or
similar

• At end of program bits output in correct order

Note that AO3 (programming) points are for programming and so
should only be awarded for syntactically correct code.

Example Solution VB.Net

Task 1:

Dim DecimalNumber As Integer
Dim ResultOfDivision As Integer
Dim BinaryDigit As Integer

Console.WriteLine("Please enter decimal number to
convert")
DecimalNumber = Console.ReadLine

Do
 ResultOfDivision = DecimalNumber \ 2
 BinaryDigit = DecimalNumber Mod 2
 Console.Write(BinaryDigit)
 DecimalNumber = ResultOfDivision
Loop Until ResultOfDivision = 0

Task 2:

Dim DecimalNumber As Integer
Dim ResultOfDivision As Integer
Dim BinaryDigit As Integer
Dim BinaryString As String

Console.WriteLine("Please enter decimal number to
convert")
DecimalNumber = Console.ReadLine
BinaryString = ""

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 17 of 44

Do
 ResultOfDivision = DecimalNumber \ 2
 BinaryDigit = DecimalNumber Mod 2
 BinaryString = BinaryDigit.ToString() +
BinaryString
 DecimalNumber = ResultOfDivision
Loop Until ResultOfDivision = 0

Console.WriteLine(BinaryString)

Example Solution Pascal

Task 1:

Var
 DecimalNumber, ResultOfDivision, BinaryDigit :
Integer;

Begin
 Writeln('Please enter decimal number to convert');
 Readln(DecimalNumber);
 Repeat
 ResultofDivision := DecimalNumber Div 2;
 BinaryDigit := DecimalNumber Mod 2;
 Write(BinaryDigit);
 DecimalNumber := ResultOfDivision;
 Until ResultOfDivison = 0;
 Readln;
End.

Task 2:

Var
 DecimalNumber, ResultOfDivision, BinaryDigit :
Integer;
 BinaryString : String;

Begin
 Writeln('Please enter decimal number to convert');
 Readln(DecimalNumber);
 BinaryString := '';
 Repeat
 ResultofDivision := DecimalNumber Div 2;
 BinaryDigit := DecimalNumber Mod 2;
 BinaryString := IntToStr(BinaryDigit) +
BinaryString;
 DecimalNumber := ResultOfDivision;
 Until ResultOfDivision = 0;
 Writeln(BinaryString);
 Readln;

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 18 of 44

End.

Example Solution Python 3.x

Task 1:

print("Input a decimal number to convert to binary:
", end = '')
decimal = int(input())

while decimal != 0:
 print(decimal % 2, end = '')
 decimal //= 2

Task 2:

print("Input a decimal number to convert to binary:
", end = '')
decimal = int(input())

result = ""
while decimal != 0:
 result = str(decimal % 2) + result
 decimal //= 2

print(result)

Alternative answers using break:
Task 1:
print("Input a decimal number to convert to binary:
", end = '')
decimal = int(input())

while True:
 print(decimal % 2, end = '')
 decimal //= 2
 if decimal == 0:
 break

Task 2:
print("Input a decimal number to convert to binary:
", end = '')
decimal = int(input())

result = ""
while True:
 result = str(decimal % 2) + result
 decimal //= 2

 if decimal == 0:
 break

print(result)

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 19 of 44

Example Solution Python 2.x

Task 1:

print "Input a decimal number to convert to
binary:",
decimal = int(input())

while decimal != 0:
 print decimal % 2,
 decimal /= 2

Task 2:

print "Input a decimal number to convert to
binary:",
decimal = int(input())

result = ""
while decimal != 0:
 result = str(decimal % 2) + result
 decimal /= 2

print(result)

Alternative answers using break:
Task 1:
print "Input a decimal number to convert to
binary:",
decimal = int(input())

while True:
 print decimal % 2,
 decimal /= 2
 if decimal == 0:
 break

Task 2:
print "Input a decimal number to convert to
binary:",
decimal = int(input())

result = ""
while True:
 result = str(decimal % 2) + result
 decimal /= 2

 if decimal == 0:
 break

print result

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 20 of 44

A. Use of // (floor division) or / (division) in Python 2.x. Python 3.x must
use //

Example Solution C#

Task 1:

int DecimalNumber;
int ResultOfDivision;
int BinaryDigit;

Console.WriteLine("Please enter decimal number to
convert");
DecimalNumber = int.Parse(Console.ReadLine());
do
{
 ResultOfDivision = DecimalNumber / 2;
 BinaryDigit = DecimalNumber % 2;
 Console.Write(BinaryDigit);
 DecimalNumber = ResultOfDivision;
} while (ResultOfDivision != 0);

Task 2:

int DecimalNumber;
int ResultOfDivision;
int BinaryDigit;
string BinaryString;

Console.WriteLine("Please enter decimal number to
convert");
DecimalNumber = int.Parse(Console.ReadLine());
BinaryString = "";
do
{
 ResultOfDivision = DecimalNumber / 2;
 BinaryDigit = DecimalNumber % 2;
 BinaryString = Convert.ToString(BinaryDigit) +
BinaryString;
 DecimalNumber = ResultOfDivision;
} while (ResultOfDivision != 0);
Console.WriteLine(BinaryString);

Example Solution Java

Task 1:

int decimalNumber;
int resultOfDivision;
int binaryDigit;

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 21 of 44

decimalNumber = console.readInteger("Please enter
decimal number to convert");
do {
 resultOfDivision = decimalNumber / 2;
 binaryDigit = decimalNumber % 2;
 console.print(binaryDigit);
 decimalNumber = resultOfDivision;
} while (resultOfDivision != 0);

Task 2:

int decimalNumber;
int resultOfDivision;
int binaryDigit;
String binaryString;

decimalNumber = console.readInteger("Please enter
decimal number to convert");
binaryString = "";
do {
 resultOfDivision = decimalNumber / 2;
 binaryDigit = decimalNumber % 2;
 binaryString = Integer.toString(binaryDigit) +
binaryString;
 decimalNumber = resultOfDivision;
} while (resultOfDivision != 0);
console.println(binaryString);

06 2 All marks AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from 06.1, including prompts on
screen capture matching those in code. Code for 06.1 must be
sensible.

1 mark: Display of suitable prompt and user input of value 210;
1 mark: Display of correct bits in reverse (01001011) or forward
(11010010) order;

A. Each bit value displayed on a separate line
A. Each bit value followed by a space

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 22 of 44

07 1 All marks AO2 (analyse)

1 mark: The arrow should be pointing towards the base class;
1 mark: There is no class called Monster // it should say Enemy, not
Monster;

2

07 2 Mark is for AO2 (apply)

VB.Net
Dim MyGame As New Game(False) //
Dim MyGame As New Game(True) //
Private Player As New Character //
Private Cavern As New Grid(NSDistance,
WEDistance) //
Private Monster As New Enemy //
Private Flask As New Item //
Private Trap1 As New Trap //
Private Trap2 As New Trap;

Pascal
MyGame := Game.Create(false); //
MyGame := Game.Create(true); //
Player := Character.Create; //
Cavern := Grid.Create(NS,WE); //
Monster := Enemy.Create; //
Flask := Item.Create; //
Trap1 := Trap.Create; //
Trap2 := Trap.Create;

Python
MyGame = Game(False) //
MyGame = Game(True) //
self.Player = Character()//
self.Cavern = Grid(NS, WE) //
self.Monster = Enemy()//
self.Flask = Item()//
self.Trap1 = Trap()//
self.Trap2 = Trap()//
Position = CellReference()//

C#

private Character Player = new Character(); //
private Grid Cavern = new Grid(); //
private Enemy Monster = new Enemy(); //
private Item Flask = new Item(); //

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 23 of 44

private Trap Trap1 = new Trap(); //
private Trap Trap2 = new Trap(); //
Game NewGame = new Game(false); //
Game TrainingGame = new Game(true); //
Random rnd = new Random();

Java
private Character player = new Character(); //
private Grid cavern = new Grid(); //
private Enemy monster = new Enemy(); //
private Item flask = new Item(); //
private Trap trap1 = new Trap(); //
private Trap trap2 = new Trap(); //
Game newGame = new Game(false); //
Game trainingGame = new Game(true); //
Random rnd = new Random();

R If any additional code
R If spelt incorrectly
I Case

07 3 Mark is for AO2 (apply)

VB.Net/Pascal/Python
CavernState;

R If any additional code
R If spelt incorrectly
I Case

1

07 4 Mark is for AO2 (apply)

Trap // Character // Enemy;

A SleepyEnemy
R If any additional code
R If spelt incorrectly
I Case

1

07 5 Mark is for AO2 (apply)

Choice // NoOfCellsEast // NoOfCellsSouth // Count // NS //
WE // Count1 // Count2;

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 24 of 44

R If any additional code
R If spelt incorrectly
I Case

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 25 of 44

07 6 Mark is for AO2 (apply)

Game;

R If any additional code
R If spelt incorrectly
I Case

1

07 7 Mark is for AO2 (analyse)

So that a position of (0,0) is rejected // so that the item can't be in the
player's starting position;

1

07 8 Marks are for AO1 (understanding)

Makes the program code easier to understand;
Makes it easier to update the program;
Makes it easier to change the size of the cavern (in the game);

Max 2 points from the list above

Max 2

07 9 Marks are for AO2 (analyse)

1 mark: Create a new object (Trap3) of class Trap;
1 mark: Change the (3rd) If statement in the PlayGame subroutine
by adding conditions to check if the player is in the same cell as
Trap3 and that Trap3 has not been triggered already;

2

08 1 Marks are for AO3 (programming)

1 mark: Selection structure with one correct condition;
1 mark: Both conditions correct and correct logical operator(s);
1 mark: Subroutine returns the correct True/False value under all
conditions;

A New conditions added to existing selection structure

VB.Net
Public Function CheckValidMove(ByVal Direction As
Char) As Boolean
 Dim ValidMove As Boolean
 ValidMove = True
 If Not (Direction = "N" Or Direction = "S" Or
Direction = "W" Or Direction = "E" Or Direction =
"M") Then
 ValidMove = False

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 26 of 44

 End If
 If Direction = "W" And
Player.GetPosition.NoOfCellsEast = 0 Then
 ValidMove = False
 End If
 Return ValidMove
End Function

Pascal
Function Game.CheckValidMove(Direction : char) :
Boolean;
Var
 ValidMove : Boolean;
Begin
 ValidMove := True;
 If Not(Direction In ['N','S','W','E','M']) Then
 ValidMove := False;
 If (Direction = 'W') And
(Player.GetPosition.NoOfCellsEast = 0) Then
 ValidMove := False;
 CheckValidMove := ValidMove;
End;

Python (2.x or 3.x)
def CheckValidMove(self, Direction):
 ValidMove = True
 if not(Direction in ['N', 'S', 'W', 'E', 'M']):
 ValidMove = False
 if Direction == 'W' and
self.Player.GetPosition().NoOfCellsEast == 0:
 ValidMove = False
 return ValidMove

C#
public Boolean CheckValidMove(char Direction)
{
 Boolean ValidMove;
 ValidMove = true;
 if (!(Direction == 'N' || Direction == 'S' ||
Direction == 'W' || Direction == 'E' || Direction ==
'M'))
 {
 ValidMove = false;
 }
 if (Direction == 'W' &&
Player.GetPosition().NoOfCellsEast == 0)
 {
 ValidMove = false;
 }

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 27 of 44

 return ValidMove;
}

Java
public boolean checkValidMove(char direction) {
 boolean validMove;
 validMove = true;
 if (!(direction == 'N' || direction == 'S' ||
direction == 'W' || direction == 'E' || direction ==
'M')) {
 validMove = false;
 }
 if (direction == 'W' &&
player.getPosition().noOfCellsEast == 0) {
 validMove = false;
 }
 return validMove;
}

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 28 of 44

08 2 Marks are for AO3 (programming)

1 mark: Selection structure with correct condition added in correct
place in the code;
1 mark: Correct error message displayed which will be displayed when
move is invalid, and only when the move is invalid;

I Case of output message
A Minor typos in output message
I Spacing in output message

VB.Net
 ...
 ValidMove = CheckValidMove(MoveDirection)
 If Not ValidMove Then
 Console.WriteLine("That is not a valid move,
please try again")
 End If
Loop Until ValidMove
...

Pascal
 ...
 ValidMove := CheckValidMove(MoveDirection);
 If Not ValidMove Then
 Writeln('That is not a valid move,
 please try again');
Until ValidMove;

Python 3.x
 ValidMove = False
 while not ValidMove:
 self.DisplayMoveOptions()
 MoveDirection = self.GetMove()
 ValidMove = self.CheckValidMove(MoveDirection)
 if not ValidMove:
 print("That is not a valid move, please try
 again")

R. If indentation not correct (if not ValidMove: must be at same
indent as rest of code inside while loop)

Python 2.x
 ValidMove = False
 while not ValidMove:
 self.DisplayMoveOptions()
 MoveDirection = self.GetMove()

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 29 of 44

 ValidMove = self.CheckValidMove(MoveDirection)
 if not ValidMove:
 print "That is not a valid move, please try
again"

R. If indentation not correct (if not ValidMove: must be at same
indent as rest of code inside while loop)

C#

 . . .
 MoveDirection = GetMove();
 ValidMove = CheckValidMove(MoveDirection);
 if (!ValidMove)
 {
 Console.WriteLine("That is not a valid move,
please try again");
 }
} while (!ValidMove);
. . .

Java
 ...
 moveDirection = getMove();
 validMove = checkValidMove(moveDirection);
 if (!validMove) {
 console.println("That is not a valid move,
please try again");
 }
} while (!validMove);
...

08 3 Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from 39 and 40, including prompts on screen capture
matching those in code. Code for 39 and 40 must be sensible

Screen capture(s) showing the error message being displayed after the
player tried to move to the west from a cell at the western end of the
cavern;

A Alternative output messages if match code for 08.2

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 30 of 44

09 1 Marks are for AO3 (programming)

1 mark: SleepyEnemy class created;
1 mark: Inheritance from Enemy class;
1 mark: MovesTillSleep property declared;
1 mark: Subroutine MakeMove that overrides the one in the base
class;
1 mark: MovesTillSleep decremented in the MakeMove
subroutine;
1 mark: Selection structure in MakeMove that calls
ChangeSleepStatus if the value of MovesTillSleep is 0; A
Changing Awake property instead of call to ChangeSleepStatus
1 mark: Subroutine ChangeSleepStatus that overrides the one in
the base class;
1 mark: Value of MovesTillSleep set to 4 in the
ChangeSleepStatus subroutine;

I Case of identifiers
A Minor typos in identifiers

VB.Net
Class SleepyEnemy
 Inherits Enemy
 Private MovesTillSleep As Integer

 Public Overrides Sub MakeMove(ByVal PlayerPosition
As CellReference)
 MyBase.MakeMove(PlayerPosition)
 MovesTillSleep = MovesTillSleep - 1
 If MovesTillSleep = 0 Then
 ChangeSleepStatus()
 End If
 End Sub

 Public Overrides Sub ChangeSleepStatus()
 MyBase.ChangeSleepStatus()
 MovesTillSleep = 4
 End Sub
End Class

Pascal
SleepyEnemy = Class(Enemy)
 Strict Private
 MovesTillSleep : Integer;
 Public
 Procedure ChangeSleepStatus; Override;
 Procedure MakeMove(PlayerPosition:
CellReference); Override;

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 31 of 44

 End;

Procedure SleepyEnemy.ChangeSleepStatus;
 Begin
 Inherited;
 MovesTillSleep := 4;
 End;

Procedure SleepyEnemy.MakeMove(PlayerPosition:
CellReference);
 Begin
 Inherited;
 MovesTillSleep := MovesTillSleep - 1;
 If MovesTillSleep = 0 Then
 ChangeSleepStatus;
 End;

Python 3.x/2.x
class SleepyEnemy(Enemy):
 def __init__(self):
 Enemy.__init__(self)
 self.MovesTillSleep = 4

 def ChangeSleepStatus(self):
 Enemy.ChangeSleepStatus(self)
 self.MovesTillSleep = 4

 def MakeMove(self, PlayerPosition):
 Enemy.MakeMove(self, PlayerPosition)
 self.MovesTillSleep -= 1
 if self.MovesTillSleep == 0:
 self.ChangeSleepStatus()

A No explicit initialialisation of new instance, i.e., no
SleepyEnemy.__init__

C#
class SleepyEnemy : Enemy
{
 private int MovesTillSleep;

 public override void MakeMove(CellReference
PlayerPosition)
 {
 base.MakeMove(PlayerPosition);
 MovesTillSleep = MovesTillSleep - 1;

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 32 of 44

 if (MovesTillSleep == 0)
 {
 ChangeSleepStatus();
 }
 }

 public override void ChangeSleepStatus()
 {
 base.ChangeSleepStatus();
 MovesTillSleep = 4;
 }
}

Java
class SleepyEnemy extends Enemy {
 private int movesTillSleep;

 public void makeMove(CellReference playerPosition)
{
 super.makeMove(playerPosition);
 movesTillSleep = movesTillSleep - 1;
 if (movesTillSleep == 0) {
 changeSleepStatus();
 }
 }

 public void changeSleepStatus() {
 super.changeSleepStatus();
 movesTillSleep = 4;
 }
}

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 33 of 44

09 2 Marks are for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from 09.1, including prompts on
screen capture matching those in code. Code for 09.1 must be
sensible.

1 mark: Screen capture(s) showing the player moving east and then
east again at the start of the training game. The monster then wakes
up and moves two cells nearer to the player. The player then moves
south;

1 mark: The monster moves two cells nearer to the player and then
disappears from the cavern display;

2

10 1 Mark is for AO3 (programming)

Appropriate option added to menu;

VB.Net
Public Sub DisplayMoveOptions()
 Console.WriteLine()
 Console.WriteLine("Enter N to move NORTH")
 Console.WriteLine("Enter S to move SOUTH")
 Console.WriteLine("Enter E to move EAST")
 Console.WriteLine("Enter W to move WEST")
 Console.WriteLine("Enter A to shoot an arrow")
 Console.WriteLine("Enter M to return to the Main
Menu")
 Console.WriteLine()
End Sub

Pascal
Procedure Game.DisplayMoveOptions;
Begin
 Writeln;
 Writeln('Enter N to move NORTH');
 Writeln('Enter E to move EAST');
 Writeln('Enter S to move SOUTH');
 Writeln('Enter W to move WEST');
 Writeln('Enter A to shoot an Arrow');
 Writeln('Enter M to return to the Main Menu');
 Writeln;
End;

Python 3.x
def DisplayMoveOptions(self):
 print()
 print("Enter N to move NORTH")

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 34 of 44

 print("Enter S to move SOUTH")
 print("Enter E to move EAST")
 print("Enter W to move WEST")
 print("Enter A to shoot an arrow")
 print("Enter M to return to the Main Menu")
 print()

Python 2.x
As for Python 3, but print() should be just print, and other
parentheses may be missing

C#
public void DisplayMoveOptions()
{
 Console.WriteLine();
 Console.WriteLine("Enter N to move NORTH");
 Console.WriteLine("Enter S to move SOUTH");
 Console.WriteLine("Enter E to move EAST");
 Console.WriteLine("Enter W to move WEST");
 Console.WriteLine("Enter A to shoot an arrow");
 Console.WriteLine("Enter M to return to the Main
Menu");
 Console.WriteLine();
}

Java
public void displayMoveOptions() {
 console.println();
 console.println("Enter N to move NORTH");
 console.println("Enter S to move SOUTH");
 console.println("Enter E to move EAST");
 console.println("Enter W to move WEST");
 ccnsole.println("Enter A to shoot an arrow");
 console.println("Enter M to return to the Main
Menu");
 console.println();
}

10 2 Marks are for AO3 (programming)

1 mark: Direction of A is allowed;
1 mark: Direction of A allowed only if player has got an arrow;

Maximum 1 mark: If any other invalid moves would be allowed or any
valid moves not allowed

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 35 of 44

VB.Net
Public Function CheckValidMove(ByVal Direction As
Char) As Boolean
 Dim ValidMove As Boolean
 ValidMove = True
 If Not (Direction = "N" Or Direction = "S" Or
Direction = "W" Or Direction = "E" Or Direction =
"M" Or Direction = "A") Then
 ValidMove = False
 End If
 If Direction = "A" And Not Player.GetHasArrow Then
 ValidMove = False
 End If
 Return ValidMove
End Function

Pascal
Function Game.CheckValidMove(Direction : Char) :
Boolean;
Var
 ValidMove : Boolean;
Begin
 ValidMove := True;
 If Not(Direction In ['N', 'S', 'W', 'E', 'A','M'])
Then
 ValidMove := False;
 If (Direction = 'A') And (Player.GetHasArrow =
False) Then
 ValidMove := False;

 CheckValidMove := ValidMove;
End;

Python 3.x/2.x
def CheckValidMove(self, Direction):
 ValidMove = True
 if not(Direction in ['N', 'S', 'W', 'E', 'A',
'M']):
 ValidMove = False
 if Direction == 'A' and self.Player.GetHasArrow()
== False:
 ValidMove = False
 return ValidMove

A return instead of assignment to ValidMove

Alternative
def CheckValidMove(self, Direction):

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 36 of 44

 ValidMove = True
 if not(Direction in ['N', 'S', 'W', 'E', 'A',
'M']):
 ValidMove = False
 if Direction == 'A':
 ValidMove = self.Player.GetHasArrow()
 return ValidMove

A return instead of assignment to ValidMove

C#
public Boolean CheckValidMove(char Direction)
{
 Boolean ValidMove;
 ValidMove = true;
 if (!(Direction == 'N' || Direction == 'S' || Direction
== 'W' || Direction == 'E' || Direction == 'M' ||
Direction == 'A'))
 {
 ValidMove = false;
 }
 if (Direction == 'A' && !Player.GetHasArrow())
 {
 ValidMove = false;
 }
 return ValidMove;
}

Java
public boolean checkValidMove(char direction) {
 boolean validMove;
 validMove = true;
 if (!(direction == 'N' || direction == 'S' ||
direction == 'W' || direction == 'E' || direction ==
'M' || direction == 'A')) {
 validMove = false;
 }
 if (direction == 'A' && !player.getHasArrow()) {
 validMove = false;
 }
 return validMove;
}

10 3 Marks are for AO3 (programming)

1 mark: Property HasArrow created;
1 mark: HasArrow set to True when an object is instantiated;
1 mark: Subroutine GetHasArrow created;
1 mark: GetHasArrow returns the value of HasArrow;

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 37 of 44

1 mark: Subroutine GetArrowDirection created;
1 mark: GetArrowDirection has an appropriate output message
and then gets a value entered by the user;
1 mark: In GetArrowDirection, value keeps being obtained from
user until it is one of N, S, W or E;
1 mark: HasArrow is set to False in GetArrowDirection;

I Additional output messages
I Case of identifiers
A Minor typos in identifiers

VB.Net
Class Character
 Inherits Item
 Private HasArrow As Boolean
 Public Sub MakeMove(ByVal Direction As Char)
 Select Case Direction
 Case "N"
 NoOfCellsSouth = NoOfCellsSouth - 1
 Case "S"
 NoOfCellsSouth = NoOfCellsSouth + 1
 Case "W"
 NoOfCellsEast = NoOfCellsEast - 1
 Case "E"
 NoOfCellsEast = NoOfCellsEast + 1
 End Select
 End Sub

 Public Sub New()
 HasArrow = True
 End Sub

 Public Function GetHasArrow() As Boolean
 Return HasArrow
 End Function

 Public Function GetArrowDirection() As Char
 Dim Direction As Char
 Do
 Console.Write("What direction (E, W, S, N)
would you like to shoot in?")
 Direction = Console.ReadLine
 Loop Until Direction = "E" Or Direction = "W" Or
Direction = "S" Or Direction = "N"
 HasArrow = False
 Return Direction
 End Function
End Class

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 38 of 44

Pascal
Character = Class(Item)
 Strict Private
 HasArrow: Boolean;
 Public
 Constructor Create;
 Procedure MakeMove(Direction : Char);
 Function GetHasArrow : Boolean;
 Function GetArrowDirection : Char;
 End;

Constructor Character.Create;
Begin
 HasArrow := True;
End;

Function Character.GetArrowDirection : Char;
Var
 Direction : Char;
Begin
 Repeat
 Writeln('What direction (E,W,S,N) would you like
to shoot in?');
 Readln(Direction);
 Until Direction In ['E', 'W', 'S', 'N'];
 HasArrow := False;
 GetArrowDirection := Direction;
End;

Function Character.GetHasArrow : Boolean;
Begin
 GetHasArrow := HasArrow;
End;

Python 3.x/2.x
class Character(Item):
 def __init__(self):
 Item.__init__(self)
 self.HasArrow = True

 def MakeMove(self, Direction):
 if Direction == 'N':
 self.NoOfCellsSouth = self.NoOfCellsSouth - 1
 elif Direction == 'S':
 self.NoOfCellsSouth = self.NoOfCellsSouth + 1
 elif Direction == 'W':
 self.NoOfCellsEast = self.NoOfCellsEast - 1
 elif Direction == 'E':
 self.NoOfCellsEast = self.NoOfCellsEast + 1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 39 of 44

 def GetHasArrow(self):
 return self.HasArrow

 def GetArrowDirection(self):
 print()
 print("Enter N to shoot NORTH")
 print("Enter S to shoot SOUTH")
 print("Enter E to shoot EAST")
 print("Enter W to shoot WEST")
 print()

 while True:
 Shoot = input()
 if Shoot != "" and Shoot[0] in ['N', 'S', 'E',
'W']:
 self.HasArrow = False
 return Shoot[0]
 else:
 print("Not a valid direction. Please enter N,
S, E or W")

C#
class Character : Item
{
 private Boolean HasArrow;

 public void MakeMove(char Direction) {
 switch(direction) {
 case 'N' : NoOfCellsSouth = NoOfCellsSouth -
1;
 break;
 case 'S' : NoOfCellsSouth = NoOfCellsSouth +
1;
 break;
 case 'W' : NoOfCellEast = NoOfCellsEast – 1;
 break;
 case 'E' : NoOfCellsEast = NoOfCellsEast + 1;
 break;
 }
 }

 public Character() {
 HasArrow = true;
 }

 public Boolean getHasArrow() {
 return HasArrow;
 }

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 40 of 44

 public char GetArrowDirection() {
 char Direction;
 do {
 Console.Write("What direction (E, W, S, N)
would you like to shoot in?");
 Direction = char.Parse(Console.ReadLine());
 } while (!(Direction == 'E' || Direction == 'W'
|| Direction == 'S' || Direction == 'N'));
 HasArrow = false;
 return Direction;
 }
}

Java
class Character extends Item {
 private boolean hasArrow;
 public void makeMove(char direction) {
 switch(direction) {
 case 'N' : noOfCellsSouth = noOfCellsSouth -
1;
 break;
 case 'S' : noOfCellsSouth = noOfCellsSouth +
1;
 break;
 case 'W' : noOfCellEast = noOfCellsEast – 1;
 break;
 case 'E' : noOfCellsEast = noOfCellsEast + 1;
 break;
 }
 }

 public Character() {
 hasArrow = true;
 }

 public boolean getHasArrow() {
 return hasArrow;
 }

 public char getArrowDirection() {
 char direction;
 do {
 console.print("What direction (E, W, S, N)
would you like to shoot in?");
 direction = console.readChar();
 } while (!(direction == 'E' || direction == 'W'
|| direction == 'S' || direction == 'N'));
 hasArrow = false;
 return direction;
 }

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 41 of 44

}

10 4 Marks are for AO3 (programming)

1 mark: Check for A having been entered – added in a sensible place
in the code;
1 mark: If A was entered there is a call to GetArrowDirection;
1 mark: Selection structure that checks if the arrow direction is N;
1 mark: Detects if the monster is in any of the cells directly north of the
player's current position;
1 mark: If the monster has been hit by an arrow then the correct output
message is displayed and the value of FlaskFound is set to True;
1 mark: The code for moving the player and updating the cavern
display is inside an else structure (or equivalent, e.g., correctly indented
in Python) so that this code is not executed if the player chooses to
shoot an arrow;

I Case of output message
A Minor typos in output message
I Spacing in output message

VB.Net
If MoveDirection <> "M" Then
 If MoveDirection = "A" Then
 MoveDirection = Player.GetArrowDirection
 Select MoveDirection
 Case "N"
 If Monster.GetPosition.NoOfCellsSouth <
Player.GetPosition.NoOfCellsSouth And
Monster.GetPosition.NoOfCellsEast =
Player.GetPosition.NoOfCellsEast Then
 Console.WriteLine("You have shot the monster
and it cannot stop you finding the flask")
 FlaskFound = True
 End If
 End Select
 Else
 Cavern.PlaceItem(Player.GetPosition, " ")
 Player.MakeMove(MoveDirection)
 Cavern.PlaceItem(Player.GetPosition, "*")
 Cavern.Display(Monster.GetAwake)
 FlaskFound =
Player.CheckIfSameCell(Flask.GetPosition)
 End If
 If FlaskFound Then
 ...

6

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 42 of 44

Pascal
If MoveDirection <> 'M' Then
Begin
 If MoveDirection = 'A' Then
 Case Player.GetArrowDirection Of
 'N':
 If (Monster.GetPosition.NoOfCellsSouth <
 Player.GetPosition.NoOfCellsSouth) And

 (Monster.GetPosition.NoOfCellsEast =
Player.GetPosition.NoOfCellsEast) Then

 Begin
 Writeln('You have shot the monster and it
cannot stop you finding the flask');
 FlaskFound := True;
 End;
 End;
 Else
 Begin
 Cavern.PlaceItem(Player.GetPosition, ' ');
 Player.MakeMove(MoveDirection);
 Cavern.PlaceItem(Player.GetPosition, '*');
 Cavern.Display(Monster.GetAwake);
 FlaskFound :=
Player.CheckIfSameCell(Flask.GetPosition);
 End;
 If FlaskFound Then
 ...

Python 3.x/2.x
if MoveDirection != 'M':
 if MoveDirection == 'A':
 ShootDirection = self.Player.GetArrowDirection()
 if ShootDirection == 'N':
 if (self.Player.GetPosition().NoOfCellsEast ==
self.Monster.GetPosition().NoOfCellsEast) and
(self.Player.GetPosition().NoOfCellsSouth >
self.Monster.GetPosition().NoOfCellsSouth):
 print("You have shot the monster and it
cannot stop you finding the flask")
 FlaskFound = True
 else:
 self.Cavern.PlaceItem(self.Player ...

C#
if (MoveDirection != 'M') {
 if (MoveDirection == 'A') {

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 43 of 44

 MoveDirection = Player.GetArrowDirection();
 switch (MoveDirection) {
 case 'N' : if
(Monster.GetPosition().NoOfCellsSouth <
Player.GetPosition().NoOfCellsSouth &&
Monster.GetPosition().NoOfCellsEast ==
Player.GetPosition().NoOfCellsEast) {
 Console.WriteLine("You have shot the monster
and it cannot stop you finding the flask");
 FlaskFound = true;
 break;
 }
 }
 else {
 Cavern.PlaceItem(Player.GetPosition(), " ");
 Player.MakeMove(MoveDirection);
 Cavern.PlaceItem(player.GetPosition(), "*");
 Cavern.Display(Monster.GetAwake());
 FlaskFound =
Player.CheckIfSameCell(Flask.GetPosition());
 }
 if (FlaskFound) {
 . . .

Java
if (moveDirection != 'M') {
 if (moveDirection == 'A') {
 moveDirection = player.getArrowDirection();
 switch (moveDirection) {
 case 'N' : if
(monster.getPosition().noOfCellsSouth <
player.getPosition().noOfCellsSouth &&
monster.getPosition().noOfCellsEast ==
player.getPosition().noOfCellsEast) {
 console.println("You have shot
the monster and it cannot stop you finding the
flask");
 flaskFound = true;
 break;
 }
 }
 else {
 cavern.placeItem(player.getPosition(), " ");
 player.makeMove(moveDirection);
 cavern.placeItem(player.getPosition(), "*");
 cavern.display(monster.getAwake());
 flaskFound =
player.checkIfSameCell(flask.getPosition());
 }

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1A/1B/1C/1D/1E – SPECIMEN

 44 of 44

 if (flaskFound) { ...

10 5 Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from 10.1, 10.2, 10.3 and 10.4,
including prompts on screen capture matching those in code. Code for
10.1, 10.2, 10.3 and 10.4 must be sensible.

Screen capture(s) showing the user shooting an arrow northwards at
the start of the training game and the message about the monster
being shot is displayed;

A Alternative output messages if match code for 10.4

1

10 6 Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from 10.1, 10.2, 10.3 and 10.4,
including prompts on screen capture matching those in code. Code for
10.1, 10.2, 10.3 and 10.4 must be sensible.

Screen capture(s) showing an arrow being shot, no message about the
monster being hit is displayed and then the invalid move message is
displayed when the player tries to shoot an arrow for a second time;

1

Copyright © 2014 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy
any material that is acknowledged to a third party, even for internal use within the centre.

	A-level

