

A-level PHYSICS (7408/1)

Paper 1

Specimen 2014

Morning

Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet.

Instructions

- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 85.

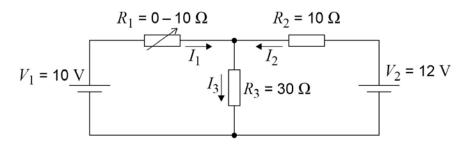
Please write clearly, in block capitals, to allow character computer recognition.														
Centre number				Can	didat	e nu	ımb	er						
Surname														
Forename(s)														
Candidate signatu	ure													

	Section A	
	Answer all questions in this section.	
0 1	A common type of smoke detector contains a very small amount of americium-241, $^{241}_{95}\mathrm{Am}$	
0 1 . 1	Determine the number of each type of nucleon in one americium-241 nucleus [2 n	s. narks]
	type of nucleon number	
	type of nucleon number	
0 1 . 2	Americium-241 is produced in nuclear reactors through the decay of plutonium, $^{241}_{\ 94}\mathrm{Pu}$	
	State the decay process responsible for the production of americium-241. Expour answer.	xplain narks]

0 1 . 3	An americium-241 nucleus decays into nuclide X by emitting an alpha particle.
	Write an equation for the decay of the nucleus and determine the proton number and nucleon number of X.
	[3 marks]
	nucleon number
	proton number
0 1 . 4	The alpha radiation produced by americium-241 causes the ionisation of nitrogen and oxygen molecules in the smoke detector.
	State what is meant by ionisation. [1 mark]
	[1 mark]
0 1 . 5	A friend who has not studied physics suggests that a smoke detector containing radioactive material should not be sold.
	Use your knowledge of physics to explain why a smoke detector containing
	americium-241 does not provide any risk to the user. [2 marks]

0 2	A student adds a series of masses to a vertical metal wire of circular cross-section and measures the extension of the wire produced. Figure 1 is a force–extension graph of the data.
	Figure 1
	force A extension
0 2 . 1	Mark on Figure 1 the point P, the limit beyond which Hooke's law is no longer obeyed.
	[1 mark]
0 2 . 2	Outline how the student can use these results and other measurements to determine the Young modulus of the wire.
	[3 marks]
	
	-

0 2 . 3	When the wire has been extended to A, the masses a the extension re-measured.	are removed one by one and
	Draw on Figure 1 the shape of the graph that the stu	dent will obtain. [1 mark]
0 2 . 4	Explain why the graph has the shape you have drawn	1.
		[2 marks]
0 2 . 5	The metal wire is used to make a cable of diameter 6 of metal of the cable is $2.0 \times 10^{11} \text{ Pa}$.	.0 mm. The Young modulus
	Calculate the force necessary to produce a strain of 0	0.20% in the cable. [3 marks]
		force = kN
0 2 . 6	The cable is used in a crane to lift a mass of 600 $\ensuremath{\mathrm{kg}}.$	
	Determine the maximum acceleration with which the strain in the cable is not to exceed 0.20%.	mass can be lifted if the
		[3 marks]
		_2
	acceleration =	$\mathrm{m~s}^{-2}$


0 2 . 7	An engineer redesigns the crane to lift a 1200 kg load at the same maximum acceleration.
	Discuss the changes that could be made to the cable of the crane to achieve this, without exceeding 0.20% strain.
	[3 marks]
	Turn to page 8 for the next question

0 3

The cells in the circuit shown in Figure 2 have zero internal resistance. Currents are in the directions shown by the arrows.

Figure 2

 R_1 is a variable resistor with a resistance that varies between 0 and 10 Ω .

 $oxed{0}$ $oxed{3}$. $oxed{1}$ Write down the relationship between currents I_1 , I_2 and I_3 .

[1 mark]

 $oxed{0}$ $oxed{3}$. $oxed{2}$ R_1 is adjusted until it has a value of 0 Ω .

State the potential difference across R_3 .

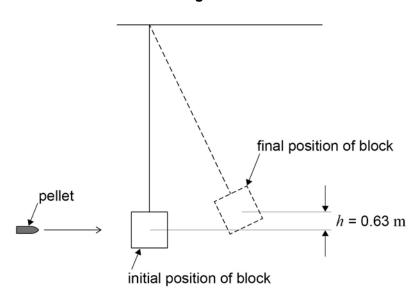
[1 mark]

potential difference = _____

0 | **3** | **.** | **3** | Determine the current I_2 .

[2 marks]

current = _____


0 3 . 4	State and explain what happens to the potential difference across R_2 as the resistance of R_1 is gradually increased from zero.	
	[3 ma	arks]
	Turn over for the next question	

0 4

The speed of an air rifle pellet is measured by firing it into a wooden block suspended from a rigid support.

The wooden block can swing freely at the end of a light inextensible string as shown in **Figure 3**.

Figure 3

A pellet of mass 8.80 g strikes a stationary wooden block and is completely embedded in it. The centre of mass of the block rises by 0.63 m. The wooden block has a mass of 450 g.

0 4 . 1 Determine the speed of the pellet when it strikes the wooden block.

[4 marks]

speed = $\underline{\qquad}$ m s⁻¹

The experiment is repeated with the steel block and an identical pellet. T rebounds after striking the block.	he pellet
Discuss how the height the steel block reaches compares with the height reached by the wooden block. In your answer compare the energy and momentum changes that occur in the two experiments.	of 0.63 m
	[4 marks]
0 4 . 3 Discuss which experiment is likely to give the more accurate value for the of the pellet.	e velocity [2 marks]

0 5 . 1	Describe the structure of a step-index optical fibre outlining the purpose of the core and the cladding. [3 marks]

0	5] . [2	A signal is to be transmitted along an optical fibre of length 1200 m. The signal
				consists of a square pulse of white light and this is transmitted along the centre of
				a fibre. The maximum and minimum wavelengths of the light are shown in Table 1.

Table 1

Colour	Refractive index of fibre	Wavelength / nm
Blue	1.467	425
Red	1.459	660

	Explain how the difference in refractive index results in a change in the pul white light by the time it leaves the fibre.	se of 2 marks]
0 5 . 3	Discuss two changes that could be made to reduce the effect described in part 5.2.	
		2 marks]

0 6 Read through the following passage and answer the questions that follow it.

5

10

Measuring the speed of sound in air

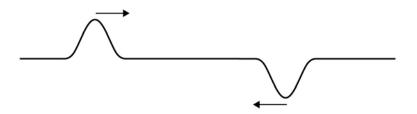
After the wave nature of sound had been identified, many attempts were made to measure its speed in air. The earliest known attempt was made by the French scientist Gassendi in the 17th century. The procedure involved timing the interval between seeing the flash of a gun and hearing the bang from some distance away. Gassendi assumed that, compared with the speed of sound, the speed of light is infinite. The value he obtained for the speed of sound was 480 m s $^{-1}$. He also realised that the speed of sound does not depend on frequency. A much better value of 350 m s $^{-1}$ was obtained by the Italian physicists Borelli and Viviani using the same procedure. In 1740 another Italian, Bianconi, showed that sound travels faster when the temperature of the air is greater. In 1738 a value of 332 m s $^{-1}$ was obtained by scientists in Paris. This is remarkably close to the currently accepted value considering the measuring equipment available to the scientists at that time. Since 1986 the accepted value has been 331.29 m s $^{-1}$ at 0 °C.

0	6	1	Suggest an experiment that will demonstrate the wave nature of sound (line 1).
	'		[1 mark]

0 6 . 2	Using Gassendi's value for the speed of sound (line 6), calculate the time between seeing the flash of a gun and hearing its bang over a distance of 2.5 km.
	time = s
0 6 . 3	Explain why it was necessary to assume that 'compared with the speed of sound, the speed of light is infinite' (line 5). [1 mark]
0 6 . 4	Explain one observation that could have led Gassendi to conclude that 'the speed of sound does not depend on frequency' (line 7). [2 marks]
	Question 6 continues on the next page

0 6 . 5	Explain how the value obtained by Borelli and Viviani was 'much better' than that obtained by Gassendi (line 8). [1 mar	k 1
	The control of the co	
0 6 . 6	The speed of sound c in dry air is given by	
	$c = k\sqrt{(\theta + 273.15)}$	
	where θ is the temperature in ${}^{\circ}C$, and k is a constant.	
	Calculate a value for k using data from the passage.	- 7
	[2 mark	Sj
	$k = \underline{\qquad} m s^{-1} K$	-1/2
0 6 . 7	State the steps taken by the scientific community for the value of a quantity to be	
	'accepted' (line 13). [2 marks	s]
	END OF SECTION A	

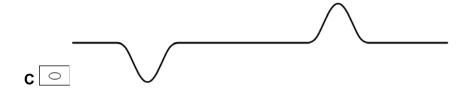
Section B

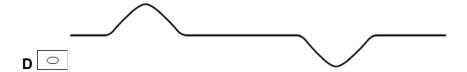

Each of Questions 7 to 31 is followed by four responses, $\bf A, \, B, \, C, \, and \, D.$ For each question select the best response.

Only one	answer p	per question is allowed.	
For each		completely fill in the circle alongside the appropriate answer. WRONG METHODS WRONG METHODS	
If you war	nt to char	nge your answer you must cross out your original answer as shown.	
If you wis		rn to an answer previously crossed out, ring the answer you now wish to	
0 7		nucleus of 9_4 Be captures a proton and emits an α particle. What is the let nucleus?	
	A		nark]
	В	$\frac{7}{3}$ Li \bigcirc	
	С	⁶ ₃ Li	
	D	⁶ ₂ He	
0 8	When	n comparing X-rays with UV radiation, which statement is correct?	nark]
	Α	X-rays have a lower frequency.	
	В	X-rays travel faster in a vacuum.	
	С	X-rays do not show diffraction and interference effects.	
	D	Using the same element, photoelectrons emitted using X-rays have the greater maximum kinetic energy.	

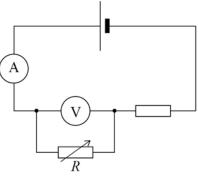
0 9	surface (source	chromatic radiative and electrons e B) is used no ty of the radiative amplitude frequency intensity wavelength	are emit electrons	ted from the are emitted	e surface. ed from the	When a seco metallic surfa	nd sour	ce iich
1 0		ertical copper v						' has a
	Which	of the following	g is corre	ct?				[4 mayl-1
	Α	The strain in 2	X is the sa	ame as tha	t in Y.		0	[1 mark]
	В	The stress in	Y is great	ter than tha	t in X.		0	
	С	The tension in	n Y is the	same as th	at in X.		0	
	D	The elastic er	nergy stor	ed in X is le	ess than th	at stored in Y.	. 0	


1 1	An el energ A B C	gy is inc $\frac{\frac{\lambda}{4}}{\frac{\lambda}{2}}$ $\frac{\lambda}{\lambda}$	reased to 4	tic energy E and a de Broglie wavelength λ . The $4E$. What is the new de Broglie wavelength?	kinetic [1 mark]
				Turn over for the next question	


1 2 The diagram shows two pulses on a string travelling towards each other.

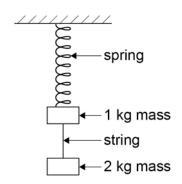


Which of the following diagrams shows the shape of the string when the pulses have passed through each other?



1 3	wavel	chromatic light may be characterised by its speed, fi ength. Which of the following quantities change who s from air into glass?	. ,
	Α	Speed only.	[]
	В	Speed and wavelength only.	
	С	Speed and frequency only.	
	D	Wavelength and frequency only.	
1 4	Increa A B	notoelectric experiment, light is incident on the meta sing the intensity of the illumination at the surface le work function minimum frequency at which electrons are emitted	eads to an increase in the [1 mark]
	С	current through the photocell	
	D	speed of the electrons	0
1 5	In the	circuit shown in the diagram the cell has negligible	internal resistance.

What happens to the reading of both meters when the resistance of ${\it R}$ is decreased?


	Reading of ammeter	Reading of voltmeter	
Α	increases	increases	0
В	increases	decreases	0
С	decreases	increases	0
D	unchanged	decreases	0

1 6		circuit shown, V is a voltmeter with a very high resistance. The integrate of the cell, r , is equal to the external resistance in the circuit.	ernal
	Which	resistance = r external resistance of the following is not equal to the emf of the cell?	
			[1 mark]
	A the	reading of the voltmeter when the Switch S is open	
		chemical energy changed to electrical energy when unit e passes through the cell	
	C twice	ce the reading of the voltmeter when the switch S is closed	
		electrical energy produced when unit current passes h the cell	
1 7		chromatic light of wavelength 490 nm falls normally on a diffraction as 6 x 10 ⁵ lines per metre. Which one of the following is correct?	grating
			[1 mark]
	Α	The first order is observed at angle of diffraction of 17°.	0
	В	The second order is observed at angle of diffraction of 34°.	0
	С	The third and higher orders are not produced.	0
	D	A grating with more lines per metre could produce more orders.	0

1 8				atom and ionizer the collision		of the following [1 mark]
	Α	An alastron	and an excited	datam		
	В			g an excess ele	ectron.	
	С		ns and a positi			0
	D	Two electro	ns and a neutr	al atom in the o	ground state.	0
1 9		orces of 6 N a		t a point. Whic	h of the followi	ng could not be the
			_			[1 mark]
	Α	16 N				
	В	8 N 🔘				
	С	5 N]			
	D	3 N	1			
	U	J IN	J			
2 0	of len	gth 0.8 m as i	n \mathbf{X} . A car me		ole of applying	on the end of a bar forces of 500 N rench as in Y .
				500 N		
	la.	0.8 m	.	\uparrow	nut	wheel wrench
						<u> </u>
	7			4		→
	$nut^{'}$	bar [′]	\downarrow		I	\downarrow
			200 N			500 N
		Х			Υ	
		is the minimunt the nut?	m length $\it l$ of the	ne wrench whic	ch would be ne	eded for him to
						[1 mark]
	Α	0.16 m	0			
	В	0.32 m	0			
	С	0.48 m	0			
	D	0.64 m	0			
	_	0.0				

2 1	ballbea same t	A ballbearing \mathbf{X} of mass $2m$ is projected vertically upwards with speed u . A ballbearing \mathbf{Y} of mass m is projected at 30° to the horizontal with speed $2u$ at the same time. Air resistance is negligible. Which of the following statements is correct?						
	001100	•	[1 mark]					
		The last control of S71 and 51	0					
	A	The horizontal component of Y 's velocity is <i>u</i> .	0					
	B C	The maximum height reached by Y is half that reached by X	0					
	D	${f X}$ and ${f Y}$ reach the ground at the same time. ${f X}$ reaches the ground first.						
	D	A reaches the ground hist.	0					
2 2		s the relationship between the distance y travelled by an object fallings and the time x the object has been falling?	ng freely					
			[1 mark]					
	Α	y is proportional to x^2						
		,						
	В	y is proportional to \sqrt{x}						
	•	v is proportional to $\frac{1}{2}$						
	С	y is proportional to $\frac{1}{x}$						
		1						
	D	y is proportional to $\frac{1}{x^2}$						
2 3	A cor	exerts a driving force of 500 $ m N$ when travelling at a constant speed (of					
2 3		h on a level track. What is the work done in 5 minutes?	ונ					
	/ Z KIII		[1 mark]					
	Α	$3.0 \times 10^6 \mathrm{J}$						
	В	$2.0 \times 10^6 \mathrm{J}$						
	С	$2.0 \times 10^5 \mathrm{J}$						
	D	$1.1 \times 10^5 \mathrm{J}$						

Two masses hang at rest from a spring, as shown in the diagram. The string separating the masses is burned through.

Which of the following gives the accelerations of the two masses as the string breaks?

acceleration of free fall = g

[1 mark]

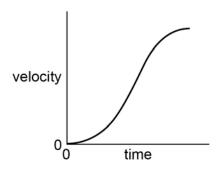
	acceleration of 1 kg mass upwards in m s	acceleration of 2 kg mass downwards in m s	
Α	3 g	1 <i>g</i>	0
В	2 g	2 g	0
С	2 g	1 g	0
D	1 <i>g</i>	1 <i>g</i>	0

2	5
4	J

An object falls freely from rest. After falling a distance d its velocity is v. What is its velocity after it has fallen a distance 2d?

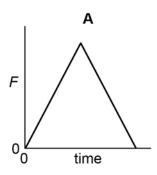
Δ	2 v	0
\boldsymbol{r}	Z V	

B 4 *v*
$$\bigcirc$$

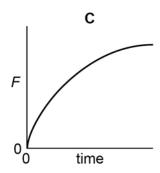

c
$$2v^2$$

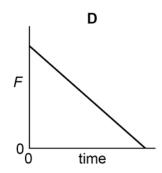
D
$$\sqrt{2} v$$

2 6	An electric motor of input power 100 W raises a mass of 10 kg vertically at a steady speed of 0.5 m $\rm s^{-1}$. What is the efficiency of the system? [1 mark]		
	A 5%	Шагк ј	


2 7

The velocity of a vehicle varies with time as shown by the following graph.




Which graph below represents how the resultant force ${\cal F}$ on the car varies during the same time?

[1 mark]

F 0 time

Α

 \circ

В

0

С

0

D

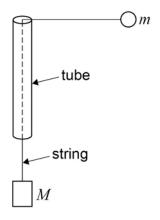
		_	
2	8		Which one of the following provides direct experimental evidence that light is a
		-	transverse wave motion rather than a longitudinal wave motion?

[1 mark]

A Two light waves that are coherent can be made to interfere.

 \circ

B Light can be diffracted.


C Light can be polarised.

D The intensity of light from a point source falls off inversely as the square of the distance from the source.

A string passes through a smooth thin tube. Masses m and M are attached to the ends of the string. The tube is moved so that the mass m travels in a horizontal circle of constant radius r and at constant speed v.

Which of the following expressions is equal to M?

- $\mathbf{A} \qquad \frac{mv^2}{2r} \qquad \boxed{\bigcirc}$
- $\mathbf{B} \qquad mv^2rg \quad \boxed{\bigcirc}$
- $\mathbf{c} \qquad \frac{mv^2}{rg} \quad \boxed{\bigcirc}$
- $\mathsf{D} \qquad \frac{mv^2g}{r} \quad \boxed{\bigcirc}$

The frequency of a body moving with simple harmonic motion is doubled. amplitude remains the same which of the following is also doubled?		If the		
A	The time period.	0		[1 mark]
В	The total energy.	0		
С	The maximum velocity.	0		
D	The maximum acceleration.	0		
A parti	A particle oscillates with undamped simple harmonic motion.			
The ac	celeration of the particle			[1 mark]
A	is always in the opposite direction to	its velocity.	0	
В	decreases as the potential energy in	ncreases.	0	
С	is proportional to the frequency.		0	
D	is least when the speed is greatest.		0	
	END OF QUESTION	NS		
	LIND OF QUEUTION			
	A B C D A parti The ac A B C	A The time period. B The total energy. C The maximum velocity. D The maximum acceleration. A particle oscillates with undamped simple. The acceleration of the particle. A is always in the opposite direction to decreases as the potential energy in its proportional to the frequency. D is least when the speed is greatest.	A The time period. B The total energy. C The maximum velocity. D The maximum acceleration. A particle oscillates with undamped simple harmonic motion. The acceleration of the particle A is always in the opposite direction to its velocity. B decreases as the potential energy increases. C is proportional to the frequency.	A The time period. B The total energy. C The maximum velocity. D The maximum acceleration. A particle oscillates with undamped simple harmonic motion. The acceleration of the particle A is always in the opposite direction to its velocity. B decreases as the potential energy increases. C is proportional to the frequency. D is least when the speed is greatest.

There are no questions printed on this page.
Copyright © 2014 AQA and its licensors. All rights reserved.