

A

AS
COMPUTER SCIENCE
Paper 1

7516/1

Monday 6 June 2016 Morning

Time allowed: 1 hour 30 minutes

For this paper you must have access to:

• a computer

• a printer

• appropriate software

• the Electronic Answer Document

• an electronic version and a hard copy of the Skeleton
Program

• an electronic version of the Data File

• an electronic version and a hard copy of the
Preliminary Material.
You must NOT use a calculator.

[Turn over]

2

INSTRUCTIONS

• Type the information required on the front of your

Electronic Answer Document.

• Before the start of the examination make sure your
CENTRE NUMBER, CANDIDATE NAME and
CANDIDATE NUMBER are shown clearly in the footer
of every page of your Electronic Answer Document
(not the front cover).

• Enter your answers into the Electronic Answer
Document.

• Answer ALL questions.

• Save your work at regular intervals.

INFORMATION

• The marks for questions are shown in brackets.

• The maximum mark for this paper is 75.

• No extra time is allowed for printing and collating.

• The question paper is divided into THREE sections.

3

ADVICE

You are advised to allocate time to each section as
follows:
SECTION A – 20 minutes; SECTION B – 20 minutes;
SECTION C – 50 minutes.

AT THE END OF THE EXAMINATION

Tie together all your printed Electronic Answer
Document pages and hand them to the Invigilator.

WARNING

It may not be possible to issue a result for this paper if
your details are not on every page of your Electronic
Answer Document.

DO NOT TURN OVER UNTIL TOLD TO DO SO

4

SECTION A

You are advised to spend no more than 20 MINUTES
on this section.

Enter your answers to SECTION A in your Electronic
Answer Document. You MUST save this document at
regular intervals.

The questions in this section ask you to write program
code starting from a NEW program/project/file.

You are advised to save your program at regular
intervals.

0 1 In question parts 0 1 . 1 and 0 1 . 2

two statements are given followed by two
conclusions numbered 1 and 2.

You must assume the two statements given in
each question are true.

Read the statements and then decide which of
the given conclusions logically follows from
the two given statements.

Write the letter corresponding to your answer
in your Electronic Answer Document.

5

0 1 . 1 Statements: All programmers work at
 night.
 Nobody who works at night
 earns lots of money.

Conclusion 1: All programmers earn lots
  of money.
Conclusion 2: Some night workers are
 programmers.

Give answer: A If only Conclusion 1
 follows.

 B If only Conclusion 2
 follows.

 C If neither Conclusion 1
 nor Conclusion 2 follows.

 D If both Conclusion 1 and
 Conclusion 2 follow.

 [1 mark]

[Turn over]

6

0 1 . 2 Statements: Some aardvarks are
 computing professors.
 All computing professors love
  Java.

Conclusion 1: All aardvarks love Java.
Conclusion 2: All computing professors are
 aardvarks.

 Give answer: A If only Conclusion 1
 follows.

  B If only Conclusion 2
 follows.

  C If neither Conclusion 1
 nor Conclusion 2 follows.

 D  If both Conclusion 1 and
 Conclusion 2 follow.
[1 mark]

7

BLANK PAGE

[Turn over]

8

0 2 The finite state machine (FSM) represented as
a state transition diagram in FIGURE 1
recognises a language with an alphabet of 0, 1
and x.

FIGURE 1

Input strings of 0x and 1x are accepted by this FSM.

0 2 . 1 In TABLE 1 indicate whether each input string
is accepted or not accepted by the FSM in
FIGURE 1.

If an input string is accepted write YES.
If an input string is NOT accepted write NO.

Complete TABLE 1 by filling in the unshaded
cells.

S3

S2

S4

S1

1

0

x

x

0,1,x
0,1,x

0,1

9

 Copy the contents of all the unshaded cells in
TABLE 1 into your Electronic Answer
Document.

TABLE 1

Input string Accepted by FSM?
111011x
1110x

111001x

 [2 marks]

0 2 . 2 In words, describe the language (set of
strings) that are accepted by the FSM in
FIGURE 1. [3 marks]

[Turn over]

10

0 3 A new function sqrt(x) is being developed
that returns the square root of a positive
integer x.

There are three different types of test data.

Complete TABLE 2 by stating the names of
the THREE DIFFERENT types of test data that
correspond to the values in the Value for x
column that could be used when testing that
the new sqrt(x) function works correctly.

Complete TABLE 2 by filling in the unshaded
cells.

Copy the contents of all the unshaded cells in
TABLE 2 into your Electronic Answer
Document.

TABLE 2

Value for x Type of test data

25

1

-8

[2 marks]

11

BLANK PAGE

[Turn over]

0 4 The contents of the arrays Items and NewItems are shown in FIGURE 2.

A pseudo-code representation of an algorithm is given in FIGURE 3.

FIGURE 2

Items
[0] [1] [2] [3]
12 25 12 53

NewItems
[0] [1] [2] [3]
0 0 0 0

12

 FIGURE 3

ItemsCount 4
NewItems[0] Items[0]
NewItemsCount 1
FOR LoopA 1 TO ItemsCount - 1
 Done False
 FOR LoopB 0 TO NewItemsCount - 1
 IF Items[LoopA] = NewItems[LoopB] THEN
 Done True
 ENDIF
 ENDFOR
 IF Done = False THEN
 NewItems[NewItemsCount] Items[LoopA]
 NewItemsCount NewItemsCount + 1
 ENDIF
ENDFOR

[Turn over]

13

BLANK PAGE

14

0 4 . 1 Dry run the algorithm in FIGURE 3 by completing TABLE 3. The first
row has been completed for you. You may not need to use all of the
rows provided in the table.

Copy the contents of all the unshaded cells in TABLE 3 into your
Electronic Answer Document. [5 marks]

TABLE 3
ItemsCount NewItemsCount LoopA Done LoopB NewItems

[0] [1] [2] [3]
4 1 12 0 0 0

0 4 . 2 Explain the purpose of the algorithm in FIGURE 3. [1 mark]

[Turn over]

15

16

0 5 The algorithm, represented using pseudo-
code in FIGURE 4, describes a method to
calculate the additive or multiplicative
persistence of a two-digit integer. The
examples below illustrate how additive and
multiplicative persistence are calculated.

EXAMPLE: calculating the additive
persistence of 87

8 + 7 = 15
1 + 5 = 6

After 2 steps the method results in a one
digit answer so the additive persistence of
87 is 2.

EXAMPLE: calculating the multiplicative
persistence of 39

3 * 9 = 27
2 * 7 = 14
1 * 4 = 4

After 3 steps the method results in a one
digit answer so the multiplicative
persistence of 39 is 3.

17

FIGURE 4

OUTPUT "Enter integer (0-99): "
INPUT Value
OUTPUT "Calculate additive or multiplicative
persistence (a or m)? "
INPUT Operation
Count 0
WHILE Value > 9
 IF Operation = "a" THEN
 Value (Value DIV 10) + (Value MOD 10)
 ELSE
 Value (Value DIV 10) * (Value MOD 10)
 ENDIF
 Count Count + 1
ENDWHILE
OUTPUT "The persistence is: "
OUTPUT Count

The MOD operator calculates the remainder resulting
from an integer division, for example, 10 MOD 3 = 1.

The DIV operator calculates integer division, for
example 10 DIV 3 = 3.

[Turn over]

18

BLANK PAGE

19

What you need to do

TASK 1
Write a program for the algorithm in FIGURE 4.

TASK 2
Test the program by showing the result of entering
47, followed by m when prompted by the program.

TASK 3
Test the program by showing the result of entering
77, followed by a when prompted by the program.

Evidence that you need to provide
Include the following evidence in your Electronic
Answer Document.

0 5 . 1 Your PROGRAM SOURCE CODE. [8 marks]

0 5 . 2 SCREEN CAPTURE(S) showing the tests
 described. [1 mark]

The part of the program where the calculations
are performed uses a WHILE repetition
structure.

0 5 . 3 Explain why a WHILE repetition structure was
chosen instead of a FOR repetition structure.

 [1 mark]

[Turn over]

20

SECTION B

You are advised to spend no more than 20 MINUTES
on this section.

Enter your answers to SECTION B in your Electronic
Answer Document. You MUST save this document at
regular intervals.

These questions refer to the Preliminary Material and
require you to load the Skeleton Program, but do not
require any additional programming.

Refer EITHER to the Preliminary Material issued with
this question paper OR your electronic copy.

0 6 State the name of an identifier for:

0 6 . 1 a variable that is used to store a single
 character. [1 mark]

0 6 . 2 a user-defined subroutine that has one
 parameter. [1 mark]

0 6 . 3 a user-defined subroutine that returns a
 Boolean value. [1 mark]

21

0 7

0 7 . 1 A constant is used to hold the filename
'Training.txt'.
State ONE advantage of using named
constants for constant values. [1 mark]

 When validating the placement of a ship the
 ValidateBoatPosition subroutine is
 called.

0 7 . 2 Explain why a FOR loop is used as part of
 checking a valid vertical ship placement.

[2 marks]

0 7 . 3 Explain the purpose of the check that is
being performed in the first selection
structure of the ValidateBoatPosition
subroutine. [2 marks]

0 7 . 4 Explain what is meant by exception handling
AND how exception handling could be used
in the GetRowColumn subroutine. [3 marks]

[Turn over]

22

0 8 FIGURE 5 shows an incomplete hierarchy
 chart for part of the Skeleton Program.

FIGURE 5

 With reference to the Skeleton Program and
FIGURE 5, answer the questions below.

0 8 . 1 What should be written in box (a) in
 FIGURE 5? [1 mark]

0 8 . 2 What should be written in box (b) in
 FIGURE 5? [1 mark]

0 8 . 3 What should be written in box (c) in
 FIGURE 5? [1 mark]

(b)

PlayGame

(c)

PrintBoard (a)

23

 A structured programming approach has been
 used in the production of the Skeleton
 Program.

0 8 . 4 Explain what is meant by a structured
 programming approach. [2 marks]

 There is a variable called Row in the
 subroutine SetUpBoard.
 There is also a different variable called Row in
 the subroutine LoadGame.

0 8 . 5 Explain why these two different variables can
 have the same identifier. [2 marks]

 When the training game is selected from the
 main menu the positions of the ships are
 loaded from a text file. A binary file could
 have been used instead.

0 8 . 6 Describe a difference between the way in
which data are stored in a binary file and the
way data are stored in a text file. [2 marks]

[Turn over]

24

SECTION C

You are advised to spend no more than 50 MINUTES
on this section.

Enter your answers to SECTION C in your Electronic
Answer Document. You MUST save this document at
regular intervals.

These questions require you to load the Skeleton
Program and to make programming changes to it.

0 9 This question refers to the subroutine
GetRowColumn.

What you need to do:

TASK 1
Adapt the program source code for the
subroutine GetRowColumn so that it checks
that the ROW entered by the player is in the
allowed range.

If an invalid value is entered for the row the
program should output:

 Invalid value entered

25

 The subroutine should not return any values
until a valid row has been entered.

TASK 2
Test that the changes you have made work by
conducting the following test:

• run the Skeleton Program
• select option 2 from the menu
• fire a shot at column 6, row 10
• fire a shot at column 6, row 9.

Evidence that you need to provide:

Include the following evidence in your Electronic
Answer Document.

0 9 . 1 Your amended PROGRAM SOURCE CODE
for the subroutine GetRowColumn. [5 marks]

0 9 . 2 SCREEN CAPTURE(S) showing the
 requested test. [1 mark]

[Turn over]

26

1 0 This question will extend the functionality of
the game.

The game needs to be changed so that a
message is displayed when all the squares
occupied by a ship have been hit.

FIGURE 6 shows an example of this
functionality of the game using the board
from the training game.

27

FIGURE 6

The player has made three shots and achieved 2 hits
and a miss.

The player’s next shot into column 7, row 9 is a third hit
and sinks the ship.
The game displays the message 'Destroyer is
sunk!' to the player.

 0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9 m h h h

 0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9 m h h

[Turn over]
DESTROYER IS SUNK!

28

 What you need to do:

TASK 1
Create a new subroutine CheckSunk that,
when given the current shot location, board
and list of ships, will:

• check the board to find out which kind of
ship has been hit

• reduce, by one, the number of squares
occupied by that ship in the list of ships

• display the message 'XX is sunk!'
where XX is the type of the ship, if the ship
now occupies zero squares.

TASK 2
Modify the MakePlayerMove subroutine so
that the subroutine CheckSunk is called when
appropriate.

TASK 3
Test your program works by conducting the
following test:

• run the Skeleton Program
• select option 2 from the menu
• fire a shot at column 1, row 3
• fire a shot at column 1, row 4
• fire a shot at column 1, row 5.

29

Evidence that you need to provide
Include the following evidence in your Electronic
Answer Document.

1 0 . 1 Your PROGRAM SOURCE CODE for the
 subroutine CheckSunk. [8 marks]

1 0 . 2 Your amended PROGRAM SOURCE CODE
for the subroutine MakePlayerMove.

 [1 mark]

1 0 . 3 SCREEN CAPTURE(S) showing the final
board layout and the message 'Patrol
Boat is sunk!'. [1 mark]

[Turn over]

30

1 1 This question will further extend the
functionality of the game.

The game is to be altered so that a player has
the option of firing either a standard shot or a
torpedo.

The player can only fire a torpedo once during
the game.

If a player decides to fire a torpedo it behaves
in the following manner:

a. if the torpedo lands directly on a ship
(even if this part of the ship has already
been hit) it behaves like a standard shot
and explodes resulting in the square
being marked as a hit and an appropriate
message is displayed

b. if the torpedo lands in an empty square or
a square already marked as a miss then
the torpedo keeps moving up one square
until it either hits a ship or moves off the
board

c. each square that the torpedo has moved
from will be marked as a miss

d. if the torpedo moves into a square that is
occupied by a ship this will cause a hit
like a standard shot (even if this part of
the ship has already been hit), the
torpedo will be removed from the board
and an appropriate message is displayed

31

 e. if the torpedo moves off the board it will
disappear and an appropriate message is
displayed.

You can choose to display the board each time
the torpedo moves or to display the board only
after the torpedo has finished moving.

FIGURES 7 to 9 show an example of a torpedo
being used.

FIGURE 7

A torpedo is fired at column 8, row 6 and does not hit a
ship.

At this stage no change is made to the contents of the
board as the torpedo did not achieve a direct hit.

 0 1 2 3 4 5 6 7 8 9
0 m

1 h

2 h

3

4

5

6

7

8
9

[Turn over]

32

FIGURE 8

The torpedo moves up one square but does not hit
anything.
Column 8, row 6 (the square the torpedo came
from) is marked as a miss.

 0 1 2 3 4 5 6 7 8 9

0 m

1 h

2 h

3

4

5

6 m

7

8

9

33

FIGURE 9

The torpedo moves up one square and hits a ship.
The torpedo is removed from the board.
Column 8, row 5 (the square the torpedo came
from) is marked as a miss.
Column 8, row 4 is marked as a hit.

 0 1 2 3 4 5 6 7 8 9

0 m

1 h

2 h

3

4 h

5 m

6 m

7

8

9

[Turn over]

34

 What you need to do:

TASK 1
Create a new subroutine
MakePlayerTorpedoMove that when given a
current board:

• asks the player to enter the row and
column

• fires a torpedo starting at the square
indicated by the player.

The torpedo should behave as described in
points a–e on pages 30-31.

TASK 2
Adapt the PlayGame subroutine so that, if the
player has not already fired a torpedo during
the game, the player is asked:

Fire a torpedo? (Y/N)

If the player responds 'N' a standard shot
should be fired.

If the player responds 'Y' the subroutine
MakePlayerTorpedoMove should be called.

35

TASK 3
Test your program works by conducting the
following test:

• run the Skeleton Program
• select option 2 from the menu
• fire a torpedo at column 1, row 7
• fire a standard shot at column 2, row 1.

END OF QUESTIONS

Evidence that you need to provide
Include the following evidence in your Electronic Answer
Document.

1 1 . 1 Your amended PROGRAM SOURCE CODE for
the subroutines MakePlayerTorpedoMove
and PlayGame and any other code that you
have changed or added. [12 marks]

1 1 . 2 SCREEN CAPTURE(S) showing the requested
 test. [2 marks]

36

There are no questions printed on this page

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of
third party copyright material will be published in a separate booklet rather than including them on
the examination paper or support materials. This booklet is published after each examination series
and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to
contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any
omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA,
Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

IB/M/Jun16/7516/1/CD/E5

