Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature)

AS COMPUTER SCIENCE

Paper 2

Friday 9 June 2017

Morning

Time allowed: 1 hour 30 minutes

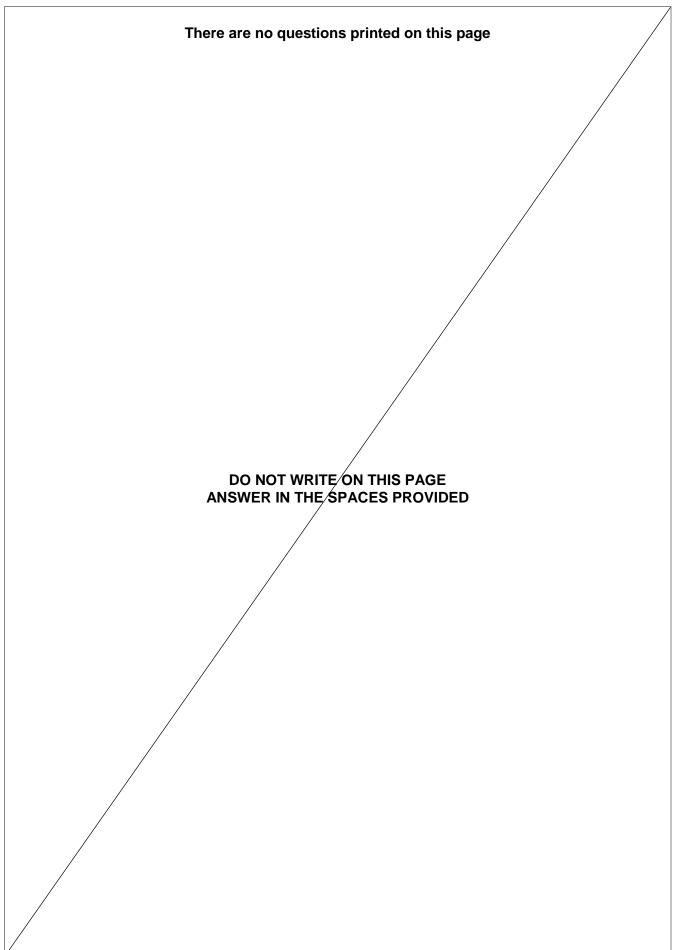
Materials

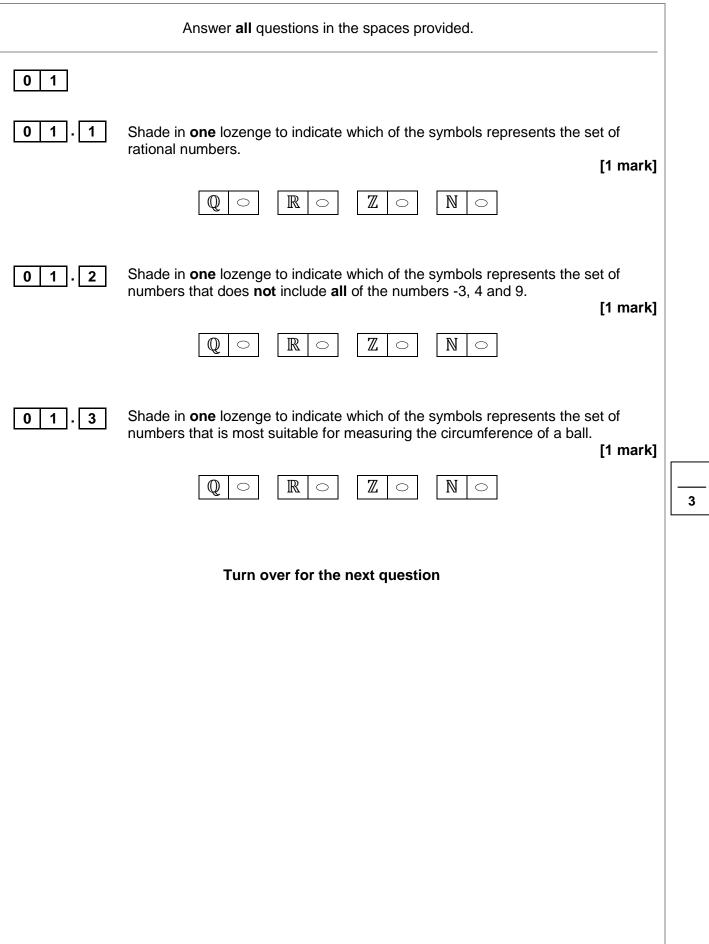
You will need no other materials. You may use a calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.


Advice

- In some questions you are required to indicate your answer by completely shading a lozenge alongside the appropriate answer as shown.
- If you want to change your answer you must cross out your original answer as shown.
- If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

For Exam	For Examiner's Use					
Question	Mark					
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
TOTAL						

0 2 Figu	ire 1a and Figu	re 1b	show	two bi	t patte	rns.					
					Figu	re 1a					
		0	0	0	1	0	1	1	1]	
					Figu	re 1b					
		0	0	0	0	0	1	1	0		
02.1	Explain how un You should illu be converted.										
02.2	If Figure 1a ar binary result	of add	ling th	e two	numb	ers to	gether	?			[1 mark]

02.3	If Figure 1a and Figure 1b both represent unsigned binary integers, what is the binary result of multiplying the two numbers?
	You must show your working. [2 marks]
	Answer:
02.4	Indicate clearly on Figure 2 where the binary point must be placed so that the value 19.375 is represented.
	[1 mark] [1 mark]
	1 0 0 1 1 0 1 1
0 2 . 5	Figure 3 is a 7-bit ASCII character to be transmitted across a network. The
	system uses odd parity with the parity bit being transmitted in the MSB (Most Significant Bit).
	Calculate the parity bit and write it in the empty cell in Figure 3 . [1 mark]
	Figure 3
	0 1 0 1 0 1 1

Turn over ►

02.6	When transmitting data across a network some systems use majority voting rather than a parity bit.
	State one advantage of using majority voting over a parity bit and explain how this advantage is achieved. [2 marks]
0 3	A band is recording and digitising a song to make available as a download from their website.
03.1	The song lasts 3 minutes. The sample resolution is 16 bits and a sample rate of 44 kHz has been used.
	A sample rate of 1 Hz means that one sample has been taken every second.
	Calculate the minimum amount of storage space, in megabytes (MB), needed to store the song in an uncompressed format.
	You must show your working. [3 marks]
	Answer:

	Describe the store the ADC mean through in this presses	
	Describe the steps the ADC goes through in this process.	[3 marks
) 3.3	The band have been advised to save their song using lossless compre	ssion.
3.3	Explain why it might be appropriate for the band to save the song using	
3.3		j lossless
3.3	Explain why it might be appropriate for the band to save the song using	j lossless
3.3	Explain why it might be appropriate for the band to save the song using	j lossless
3.3	Explain why it might be appropriate for the band to save the song using	j lossless
3.3	Explain why it might be appropriate for the band to save the song using	
) 3.3	Explain why it might be appropriate for the band to save the song using	j lossless
) 3.3	Explain why it might be appropriate for the band to save the song using	j lossless

0 4		
0 4 . 1	Explain the differences between an interpreter and a compiler.	[4 marks]

0 4 . 2

A company is using a newly-developed processor in its latest microwave oven. A software developer is writing the program to control the oven.

The developer chose to use **assembly language** rather than a high-level language to write the program.

Explain why the developer may have made this decision.

[3 marks]

Turn over for the next question

				10		Do not outside box
0 5					Figure 4	
		Α	В	Q		
		0	0	1		
		0	1	1		
		1	0	1		
		1	1	0		
0 5 . 2 Co	omplete tl	he truth	n table b	elow to	prove that $\mathbf{A} + \overline{\mathbf{B}}$ is equivalent to $\overline{\overline{\mathbf{A}} \cdot \mathbf{B}}$	
					[3 mark	s]
	A	B			[3 mark	s]
	A 0 0	B 0			[3 mark	s]
	0	0			[3 mark	s]
	0	0			[3 mark	s]
	0 0 1	0 1 0			[3 mark	s]
	0 0 1	0 1 0			[3 mark	s]
	0 0 1	0 1 0			[3 mark	s]
	0 0 1	0 1 0			[3 mark	s]
	0 0 1	0 1 0				s]
	0 0 1	0 1 0				s]

0 5.3	Using the laws of Boolean algebra, simplify the following Boolean expression.
	$(\mathbf{X} + \mathbf{Y}) \cdot (\mathbf{X} + \overline{\mathbf{Y}})$
	You must show your working. [4 marks]
	Answer:
	Turn over for the next question

0 6	The two most common computer architectures are Harvard and von Neumann.
06.1	Describe one difference between the way the Harvard and von Neumann architectures operate. [2 marks]
06.2	Shade one lozenge to indicate the type of computer architecture that is typically used for digital signal processing.
	[1 mark] Harvard O von Neumann O

0 6 . 3	Describe, using full sentences, the steps involved in the Fetch-Execute cycle for the von Neumann architecture. Your description should cover the fetch, decode and execute stages and must clearly state which of the three sections each step falls in.
	lans m. [6 marks]
	Turn over for the next question

Turn over ►

IB/M/Jun17/7516/2

Logically shift left the value stored in register n by the number of bits specified by <operand2> and store the

Logically shift right the value stored in register n by the number of bits specified by <operand2> and store the

0 7 Table 1 – stand	ard AQA assembly language instruction set. This should
be used to answ	ver question parts 0 7.1 and 0 7.2
LDR Rd, <memory ref=""></memory>	Load the value stored in the memory location specified by
	<memory ref=""> into register d.</memory>
STR Rd, <memory ref=""></memory>	Store the value that is in register d into the memory location
	<pre>specified by <memory ref="">.</memory></pre>
ADD Rd, Rn, <operand2></operand2>	Add the value specified in <operand2> to the value in</operand2>
	register n and store the result in register d.
SUB Rd, Rn, <operand2></operand2>	Subtract the value specified by <operand2> from the value</operand2>
	in register n and store the result in register d.
MOV Rd, <operand2></operand2>	Copy the value specified by <operand2> into register d.</operand2>
CMP Rn, <operand2></operand2>	Compare the value stored in register n with the value
	specified by <operand2>.</operand2>
B <label></label>	Always branch to the instruction at position <label> in the</label>
	program.
B <condition> <label></label></condition>	Branch to the instruction at position <label> if the last</label>
	comparison met the criterion specified by <condition>.</condition>
	Possible values for <condition> and their meanings are:</condition>
	EQ: equal to NE: not equal to
	GT: greater than LT: less than
AND Rd, Rn, <operand2></operand2>	Perform a bitwise logical AND operation between the value
	in register n and the value specified by <operand2> and</operand2>
	store the result in register d.
ORR Rd, Rn, <operand2></operand2>	Perform a bitwise logical OR operation between the value in register n and the value specified by <operand2> and</operand2>
	store the result in register d.
EOR Rd, Rn, <operand2></operand2>	Perform a bitwise logical XOR (exclusive or) operation
	between the value in register n and the value specified by
	<pre><operand2> and store the result in register d.</operand2></pre>
MVN Rd, <operand2></operand2>	Perform a bitwise logical NOT operation on the value
_	specified by <operand2> and store the result in register d.</operand2>

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a label the identifier of the label is placed after the branch instruction.

result in register d.

result in register d.

Interpretation of <operand2>

Stops the execution of the program.

<operand2> can be interpreted in two different ways, depending on whether the first
character is a # or an R:

- # use the decimal value specified after the #, eg #25 means use the decimal value 25.
- Rm use the value stored in register m, eg R6 means use the value stored in register 6.

The available general purpose registers that the programmer can use are numbered 0 to 12.

HALT

LSL Rd, Rn, <operand2>

LSR Rd, Rn, <operand2>

0 7.1	Figure 5 shows an incomplete assembly language program. The intended purpose of the code is to count from 1 to 10 inclusive, writing the values to memory location 17, which is used to control a motor.						
	Complete the code in Figure 5 . You may not need to use all four lines for your solution and you should not write more than one instruction per line. [4 marks]						
	Figure 5						
	startloop:	MOV R0,	#1				
		STR RO,	17				
	endloop:						
		HALT					
0 7.2	R1 contains the instruction be			Vhat value v	will be containe	d in R1 after the	
			LSI	R1, R1,	, #2	[1 mark]	
0 7.3	Explain the di	fference be	tween dire	ect address	ing and immed	iate addressing. [1 mark]	

0 8	Devices can communicate using either parallel or serial transmission.					
	Parallel transmission sends many bits at the same time whilst serial transmission only sends one bit at a time.					
08.1	Describe two reasons why serial transmission might be preferred to parallel transmission.					
	[4 marks]					
0 8 . 2	In the context of networking, define the following terms. [2 marks]					
	Bit rate:					
	Latency:					

08.3	Explain how disabling SSID (Service Set Identifier) broadcasting can increase the security of a wireless network.
	[2 marks]
0 8.4	Explain how the use of a MAC (Media Access Control) address white list can increase the security of a wireless network.
	[2 marks]
	Turn over for the next question

1 0	A laser printer has a representation of an image stored in its memory.				
	Describe how it prints this image on to a piece of paper.	[6 marks]			
END OF QUESTIONS					
Copyright Information	from the Nevember 2015 exemination earlier, colonguladesments of third party convright material will be publish	ad in a			
separate booklet rather than	from the November 2015 examination series, acknowledgements of third party copyright material will be publish including them on the examination paper or support materials. This booklet is published after each examination rom www.aqa.org.uk after the live examination series.				
	copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsu any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hi				
Copyright © 2017 AQA and it	ts licensors. All rights reserved.				