ORBITALS:
BACKGROUND MATERIAL FOR TEACHERS OF
PRE-U CHEMISTRY

1. INTRODUCTION

In the author’s experience of teaching sixth-form chemistry, the topic
of orbitals causes the greatest upset among students, across the ability
range. The abstract and counter-intuitive elements are difficult enough
for students to grasp as it is, while the apparent contradiction of what
was learnt at GCSE level can draw protest. Demands for justification
and explanation can be tricky to field. Of course such enquiries lead
inevitably to quantum mechanics.

The purposes of this document are several.

(1) Provide guidance to teachers on useful approaches to teaching
this area. Some of the material in this chapter is worth con-
veying directly to all students; some could be useful extension
material; parts could be useful reference for teachers to be able
to draw upon if certain questions arise in discussion. At the
beginning of each subsection will be advice about how the ma-
terial may be employed.

(2) Explain the origin of atomic orbitals from first principles, and
extend the treatment to bonding and antibonding molecular
orbitals. This should give teachers greater confidence discussing
orbitals.

(3) Treat the subject rigorously while remaining comprehensible at
the level of a bright sixth former with knowledge of A-level fur-
ther maths. Nothing in this chapter will be beyond the capacity
of the brightest students.

(4) Provide figures that illustrate the subject matter exactly, rather
than using the artists’ impressions that are seen in many text
books at this level. The resolution of the figures remain sharp
after being expanded many times in a pdf viewer.

(5) Correct common misconceptions at this level about orbitals.

2. WHAT ARE ORBITALS AND WHY ARE THEY NECESSARY"?

Most students begin their sixth-form chemical studies thinking of
electrons orbiting a nucleus like planets orbit the sun, ‘e with classical
mechanics. How do orbitals and subshells fit into this picture? This

is an ideal time to discuss what is meant by a model, how they can
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2 ORBITALS

be useful up to point, but may need refining under different circum-
stances. In this context it might also be worth pointing out that even
the Schrodinger equation isn’t the last word since it doesn’t take into
account the effects of special relativity (the Dirac equation does this)
and more besides.

2.1. Wave-particle duality. At the root of it all is wave-particle du-
ality, which is an experimental fact: electrons can impart momentum
in collisions like particles do, and they can be diffracted and produce
interference patterns like waves do. Pre-U students need to know that
electrons in atoms are described by a wave function, and so this in itself
implies the wave nature of the electron. Whether electrons behave as
waves or particles depends on the experiment. For our purposes we are
taking electrons in atoms to behave as standing waves. By analogy, a
plucked guitar string holds a standing wave. We can imagine the string
to be a one-dimensional object. The two-dimensional analogue might
be the flat surface of a drum being struck. The three-dimensional ana-
logue might be a rubber ball vibrating around its own centre. Electron
wave functions have three spatial dimensions. Students are familiar
with standing waves and so this will be a useful analogy.

Paul Dirac argued in his classic monograph on quantum mechanics
(see the first section in [1]) that wave-particle duality could be justified
on philosophical grounds. Considering the experimental fact that mat-
ter is not continuous but composed of fundamental particles, it follows
that there must be some degree of indeterminacy at the level of these
particles, since any observation made of a fundamental particle must
involve disturbing it (with a photon, for example). In describing an
electron as a wave we have introduced the required indeterminacy in
the simultaneous measurement of its position and momentum.

2.2. Wave functions. Students who have seen the equations of simple
waves in physics and maths may be interested or relieved that electron
wave functions may be approached (initially, at least) from the same
direction. More mathematically able students could be extended to
consider the complex exponential form of the wave functions.

The Greek letter psi, v, is normally used to represent the wave func-
tion of an electron. A general formula for the amplitude at a given
point on the x axis of a wave travelling from right to left is

1 = Asin (wt + ¢), (1)

where A is the amplitude of the wave at the given point, w is the
angular frequency, t is time elapsed and ¢ is the phase of the wave in
radians at t = 0. The angular frequency is defined as

w=2mf, (2)

where f is the frequency in Hertz (s7!). wt is therefore 27 times the
number of wavelengths that passed the point in time ¢. It is therefore
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the phase of the wave in radians at time ¢ when ¢ = 0. A general
formula for a stationary wave on the x axis is

Y = Asin (kx + ¢), (3)

where ¢ is the phase of the wave in radians at * = 0 and k is the
wavenumber. Wavenumber is defined as
27

k= T’ (4)

where A is the wavelength. This means that kx is 27 times the number
of multiples of the wavelength along the z axis. k£ is therefore the
spatial equivalent of the angular frequency, meaning that kx is a spatial
equivalent of angular phase, and is also measured in radians. We can
combine equations (1) and (3) to describe a wave in terms of both space
and time coordinates,

1 = Asin (kx + wt + ¢), (5)

where ¢ is the phase of the wave in radians at + = 0 and ¢t = 0.

We could also have written equation (5) with a cosine function if we
had adjusted the value of ¢ by 7/2. Since there are multiple phases in
the argument of the trig function it becomes mathematically convenient
to express the wave function as a complex exponential function, which
is related to trig functions through de Moivre’s equation,

e'? = cos ¢ + isin ¢. (6)

where 1 = /—1. The complex exponential form is useful because the
expression can be written as the product of complex exponentials of
the component phases:

Aet(@1+d2+d3) _ Apid1,id2 i3 (7)

It might seem unsettling to have the complex i appearing in a wave
function, but there are mathematical tricks to make these complex
exponentials real. For example,

Ae™® 4+ Ae™"® = 2A cos ¢, (8)

since cos ¢ = cos (—¢) but sin¢ = —sin (—¢). The properties of com-
plex exponentials and their use in describing oscillating functions are
explained in [2].

2.3. Schrodinger and his equation. When Schrodinger first con-
structed a wave function to describe fundamental particle he wrote it
in terms of variables that might be measured: position, momentum, en-
ergy and time. He combined these with the Planck constant, h, since
this was a measure of the smallest packets or quanta of energy that
could be measured, as illustrated by the well-known equation relating
the energy, F, of a photon of light to its frequency, f,

E = hf. (9)
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Equation (9) shows that Planck’s constant has units of J s. These are
the same units as momentum X distance and also energy x time. Stu-
dents will all be familiar with this equation. Those with some ability in
maths might be able to appreciate a generic wave function, comparable
to equation (5) but expressed in the form of a complex exponential is

w:AeXp{Qm (prmwp)}. (10)

There is a negative sign in front of the Ft term as the wave is defined
as travelling in the positive direction. (In equations (1) and (5) the
wave is travelling in the negative direction.)

Schrodinger’s famous equation is an eigenvalue equation. Such equa-
tions take the general form

Op = N, (11)

where O is an operator (as indicated by the hat symbol). An operator
is something that acts on a function to produce another function. In an
eigenvalue equation, when the operator acts on the function, called an
eigenfunction, it returns the same function multiplied by a constant,
A, known as the eigenvalue. Schrodinger constructed operators that
generated eigenvalues that correspond to physical observables. Most
students won’t have met eigenvalue equations, but will understand the
concept, given some explanation. For example, if an operator is the
second derivative with respect to x then the function Asin2x will be
an eigenfunction, giving the eigenvalue —4.

The operator for momentum along the z axis, p,, is % X a%' The
partial differential operator a% denotes differentiating with respect to x
while keeping other variables constant. Applying this operator to the
generic wave function, p,v, returns the momentum, p, as the eigen-
value:

. h 0y
P = o X B
h 0 —F
= %x%{Aexp(Qm' (prt+¢)>}
= pAexp <27r2' (px%Et + ¢)> =pyY (12)

This is known as the position representation, as it is the position vari-
able being operated on. The operator for position in this representation
is trivially xz.

These operators for momentum and position are used to construct
the Schrodinger equation in the following sections. This field is known
as wave mechanics.
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2.4. Properties of eigenvalue equations. These equations have cer-
tain properties from which chemists can take advantage. In fact, many
of the standard operations in quantum chemistry, such as normalising
wave functions, creating bonding and antibonding combinations, and
constructing hybrid orbitals, depend on the following properties.

(1) An eigenfunction may be multiplied by any constant and it
remains an eigenfunction that produces the same eigenvalue
from the operator.

(2) A linear combination, ie a sum, of eigenfunctions is also an
eigenfunction of the operator. In this sense eigenfunctions add
up rather like vectors and so wave functinos are often called
eigenvectors. Using the arbitrary constants from the previous
point, our eigenvectors can effectively all be normalised to the
same length.

(3) A certain class of operator is particularly useful for quantum
chemistry, namely Hermitian operators. When operating on a
linear combination of n eigenvectors an n X n matrix is required.
Such a matrix is Hermitian if it is self-adjoint. A self-adjoint
matrix is equal to its conjugate transpose, which is formed by
reflecting all the matrix elements in the leading diagonal and
taking the complex conjgate of each element that has been re-
flected. The reason Hermitian operators are so useful is that
their eigenvalues are always real, a requirement for physical ob-
servables.

(4) Another property of Hermitian operators is that their eigenvec-
tors are all mutually orthogonal. Two vectors are orthogonal
when their scalar, ie dot, product is zero. The analogous proce-
dure with wave functions is to integrate the product of two wave
functions over all space. This fact provides much simplification
to quantum chemical calculations.

The properties of Hermitian operators are derived and discussed in

detail in [3] and [4].

2.5. The meaning of the wave function. Quantum mechanics —
dynamics on the smallest scales — raises many perplexing questions.
One is on the physical meaning of the wave function itself (a question
asked by many students being introduced to orbitals). As Dirac wrote
(in the first part of [1]), it is “important to remember that science is
concerned only with observable things”. The wave function itself is
not observable, so one might question the validity of employing them.
However, predictions of observable quantities made using wave func-
tions have been confirmed experimentally countless times. Despite the
philosophical problems with quantum mechanics it is arguably science’s
most tested and successful theory.
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For an eigenvalue to relate to a physical observable, it must be a
real number. Wave functions are typically complex but can be made
real by multiplication by their complex conjugate, denoted *, which is
the wave function with the sign of the imaginary component reversed.
Most students will be familiar with complex numbers, and will be able
to appreciate this by writing a general complex function as (a + b),
where a and b are real:

(a+ib)(a —ib) = a® — i*b* = a® + b, (13)

which is real. Hence a wave function only, in general, corresponds to
an observable quantity when it is multiplied by its complex conjugate.
Such a quantity is a mathematical function, typically of three spatial
coordinates. The arbitrary constant that belongs to each wave function
is chosen such that the function ¥*v integrated over all space gives 1.
Thus, when the wave function ©¥*1 is integrated over a range of spatial
coordinates, the resulting value is the probability of the electron being
found in that volume. The wave nature of the electron implies that the
position of the electron at any given instant is uncertain, and so only
probabilities of position can be obtained with the wave function.

2.6. What are orbitals? This is another question that students per-
sist in asking. Strictly, orbitals are the three-dimensional probability
density functions, ¢*1, that describe the location of an electron in that
state. As we shall see in section 3.5, the radial functions decay asymp-
totically to zero as r increases. If we want to describe an orbital with
a three-dimensional shape we have to decide what proportion of the
function to show. Typically 90% of the probability density function is
used, 7e r is limited to the value such that 90% of the volume of the
function (which, since it is defined as a probability, has a total value
of 1) is shown. The boundary of this function is known as an isosur-
face since the wave function has a common value at all points on this
surface.

Models and pictures of orbitals commonly involve lobes of different
colour. These represent the phase or sign of the wave function in the
different lobes. This sign has no significance in isolated atoms since
once the wave function is multiplied by its complex conjugate this phase
information is lost. It is significant, however, when orbitals on different
atoms combine to make chemical bonds: there will be cancellation
where orbitals lobes of opposite sign overlap, for example. This point
will be considered further in section 4.

2.7. Dirac notation. For students who are extended in quantum mat-
ters, this notation can save a lot of writing. Multiplication of a wave
function by its complex conjugation and integration over all space is
such a common operation in quantum chemistry that Dirac developed
a short-hand notation used by all in the field. The integral of ¥*v) over
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all space is abbreviated as

<l >= / / / U@y, e,y o) dedydz, (14)

where < 9| is known as the bra vector, and ¢ > as the ket vector.
The bra vector is a complex conjugate. Expressions involving operators
can also be expressed with this notation. For example, equation (11)
1s written as

Ol >=Av>. (15)

It is only when the bra vector is included that an integration over all
space is implied.

3. ORBITALS IN THE HYDROGEN ATOM

3.1. Spherical polar coordinates. In the hydrogen atom, it is easi-
est to consider the nucleus to be at the centre of our coordinate system.
Given the spherical symmetry of an isolated hydrogen atom, it is most
practical to use spherical polar coordinates. Students will have met
polar coordinates and some will be familiar with spherical polars too.
These are illustrated in figure 1.

F1GURE 1. The spherical polar coordinate system

r is the radial distance, which is always positive. The angles 6 and ¢
are a little like latitude and longitude when considering locations on the
globe (except they are measured in degrees and latitude is measured
from the equator). In spherical polar coordinates € is known as the
colatitude and lies in the range 0 to 7 radians; ¢ is known as the
azimuth angle and lies in the range 0 to 27 radians. They are related
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to Cartesian coordinates as follows.
r=+x?+y>+ 22 (16a)
6 = arccos (z/v/ 2% + y? + 22) (16b)

¢ = arctan (y/x) (16¢)
The inverse relations are
x =rsinfcosp (17a)
y =rsinfsing (17b)
z =rsinf. (17c)

A great advantage of using spherical polar coordinates to describe
the hydrogen electron is that the wave function can factorise into a
radial part, e depending only on r, and an angular part, depending
only on # and ¢ which simplifies calculations.

3.2. Degrees of freedom and quantum numbers. Since the ear-
liest spectroscopic experiments in the nineteenth century it has been
evident that atoms absorb and emit energy in discrete amounts. (The
first equation to describe the energy gaps in hydrogen atoms using
what was effectively a quantum number was devised by the German
schoolmaster J. J. Balmer in 1885.) This caused terrible problems for
classical mechanics, which couldn’t explain the results adequately.

Solving the Schrodnger equation and deriving quantum numbers,
even for simple model systems, can be hard work mathematically for
the uninitiated. However, this can be avoided, and much useful ground
covered, by employing some simple analogies using standing waves to
illustrate the origin of quantum numbers. Let us consider the standing
wave on a plucked guitar string. The standing wave may only have
certain wavelengths due to the constraint that the string is fixed at
each end. In wave mechanics such a constraint is known as a bound-
ary condition. The lowest energy, or fundamental, note is when the
length of the string is half a wavelength, ie the only points on the
string where the amplitude is fixed at zero are at the ends. These zero
points are known as nodes. Higher energy standing waves have shorter
wavelength. The next-highest energy wave, the first harmonic, has half
the wavelength of the fundamental, so that a whole wavelength is held
by the string and there is a third node half way along the string. In
music, these harmonic differences are the octaves. The harmonic to
higher energy has one third the wavelength of the fundamental. It
turns out that the energy of the allowed standing waves is a function
of n — 1, where n is the number of nodes on the string. (n — 1 is used
so the fundamental takes a value of 1 and harmonics are multiples of
this.) n here is analogous to a quantum number and its origin lies in
the boundary condition imposed on the standing wave.
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In the plucked guitar string example, there is only degree of freedom
in the vibration as the string may be considered to be one-dimensional.
A two-dimensional analogy would be a square drum in the zy plane.
When the membrane is struck, its vibrations have two degrees of free-
dom as the membrane can be considered two-dimensional. (The x and
y axes are independent in that they are mutually perpendicular, or or-
thogonal.) This leads to two quantum numbers, n, and n,, say, where
n, is the number of nodes on the x axis of the drum while n, refers
to the y axis. Each quantum number relates to a boundary condition:
the fact that the amplitude at the ends of the drum on each axis are
fixed at zero. The energy of these standing waves would, analogously,
be a function of (n, — 1)(n, — 1). The three-dimensional analogue, a
vibrating cube, is harder to visualise, but we could extend the analysis
to conclude that it has three degrees of freedom, that its vibrations are
associated with three quantum numbers, n,, n, and n., and that the
energy of its standing waves is a function of (n, — 1)(n, — 1)(n, — 1).

Analogies involving circular motion will bear a closer resemblance to
the hydrogen atom. What about standing waves on a circular loop of
wire? A circle may be thought to have no boundary but there is, in
fact, a boundary condition. In order for a wave on the circular loop to
be a standing wave, its amplitude at an angle ¢ from some reference
point must be equal to its amplitude at the angle p+27. While we may
consider a circle in the zy plane to be two-dimensional, if we describe
it with spherical polar coordinates from the centre of the circle r and 6
are constant, leaving only a single coordinate, ¢. So the circle is one-
dimensional with one degree of freedom, and there is one boundary
condition for standing waves. We could describe the standing wave
with a single quantum number, say m, that is the number of nodes
of the standing wave on the loop. Being a circular standing wave,
successive harmonics have two more nodes rather than one. It turns
out that the energy of these circular standing waves is a function of
m/2. This is a more natural quantum number than the number of
nodes since angular momentum quantum numbers naturally go up in
integer steps. By analogy with the harmonics on the one-dimensional
string and equation (6), the general wave function for standing waves
on a circular wire is

= Noe™?, (18)

where N, is the arbitrary constant in front of any eigenfunction and m
is now defined as half the number of nodes on the standing wave.

The two-dimensional analogy of a circular standing wave is a vi-
brating elastic sphere. In spherical polar coordinates measured from
the centre of the sphere r is constant, leaving 6 and ¢ as the two de-
grees of freedom, each with their own boundary conditions, ¥ (r, 0, ¢) =
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W(r,0 4+ 2w, ) and P(r,0, ) = (r,0,¢ + 2m). There are two result-
ing quantum numbers, m relating to ¢ and [ relating to #. The nodes
relating to [ will be discussed further in section 3.4.

The three-dimensional circular standing wave gives the solutions for
the hydrogen electron. With r, 6 and ¢ all variable there are three de-
grees of freedom, three boundary conditions and three quantum num-
bers. The boundary condition for r is that it must decay to zero at
infinity — otherwise the electron wouldn’t be localised on the atom.
The quantum number associated with r is called n as there are certain
parallels with the case of the vibrating string.

3.3. Angular momentum. Students studying physics may be inter-
ested in the important role that angular momentum plays in orbitals,
and how the uncertainty principle affects angular momentum in quan-
tum systems.

We saw in section 2.3 that there is an operator for determining the
momentum of an electron using an eigenvalue equation. This was a
linear momentum, mv which is a vector since velocity (v) is a vector. A
more relevant quantity for circular motion is the angular momentum, 1,
also a vector, which is defined as the cross product r x p. If a particle is
moving in a circle, the vector describing its angular momentum points
perpendicular to the plane of the circle. Rather than defining the
kinetic energy as %va = p?/2m we use the rotational kinetic energy
11w? = [?/21, where [ is the moment of inertia of the electron and w
is the magnitude of the angular velocity (which is the product of the
magnitudes of the radius of the circle and the linear velocity). There
are, however, three degrees of freedom to angular momentum, [, = zp,,
ly =ypy, and [, = zp..

The quantum mechanics of angular momentum is a complicated sub-
ject because Heisenberg’s uncertainty principle (which is a manifesta-
tion of the indeterminacy of certain quantities being measured simul-
taneously) forbids all three components of angular momentum being
known simultaneously. Only one component of angular momentum can
be known exactly which, by convention, is [,. It is, however, permis-
sible to know simultaneously [, and the square magnitude of the total
angular momentum, [* = [3 + 2 + IZ. This result can be derived from
the angular momentum operators [3]. Since there are only two simul-
taneously observable orbital angular momenta for an electron, these
are the quantities described by the two angular quantum numbers, [
and m. (The definition of m used by chemists is equivalent to the
m/2 mentioned in section 3.2 in the context of nodes.) [ relates to the
magnitude of the orbital angular momentum of the electron in that
state and so is always positive. It increases in integer steps, with its
minimum permissible value being 0. m relates to the orientation of the
angular momentum vector — specifically its projection on the z axis. It
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also varies in integer steps, as discussed in section 3.2. It is not sur-
prising, then, that the permissible range of m is —I, =l +1, ..., 0, 1,
..., L —1, 1. It follows that for each value of [ there are 2] + 1 possible
values of m.

3.4. Angular wave functions of the hydrogen electron. Many
students will at least be curious to see what the mathematical func-
tions are that describe the orbital shapes. They are described in this
subsection; their exact 3D rendering given in figures 2, 3 and 4 and
the analytical wave functions are given table 2. The derivation of the
orbitals’ cartesian labels are given in equations (17) and (21). Students
will need to be able to able to reproduce the approximate shapes of the
orbitals with the relevant label.

Using the quantum theory of angular momentum it is possible to find
simultaneous eigenfunctions of the operators for [, and /% [3]. Following
the arguments in sections 2.2 and 3.2, it is not surprising to find that
the wave function involving ¢, with its link to the one-dimensional cir-
cular motion and the m quantum number is the same as equation (18).
The normalisation constant in front of each of the exponentials (see
section 2.5) is

1

Nz

The normalisation of this function is as follows. The complex conjugate
of Nye"™? is Nye "™, The product of these two functions is simply
Nf, since e"¥e~m? = ¢ = 1. N, is chosen so that the integral of 1)*¢
with respect to ¢ between 0 and 27 (which is all space for ¢) gives 1.
Since N, is just a number it taken out of the integral:

2
N2 /0 do = 1. (20)

The integral comes to 27 so N, must equal 1/ V2.

Much algebra is required to derive the functions of 6 that are si-
multaneous eigenfunctions of [, and [? [3]. They are the associated
Legendre functions, which actually depend on m as well as [. They are
all real and given the symbol P/™; they are collected in table 1 with the
arbitrary constants, Ny required to normalise them [5], as discussed in
section 2.5. The product of P"(6) and 1,,(¢) are the spherical har-
monic functions, Y;,,(0, ¢), which describe the oscillations of an elastic
sphere. There is more than one phase convention with these functions;
here we follow those of Pauling [5].

The angular functions give the characteristic shapes of atomic or-
bitals. The [ quantum number relates to the type of subshell, which
are usually referred to by letter, as shown in table 2. For non-zero m
the ¥ (¢) are imaginary. These are made real by taking linear combi-
nations, as shown in equation (8). It is a property of eigenfunctions

N, = (19)
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B (9)

Bt Ny

Py \2/2
P’ \6/2
P V/3)2
Py \/10/4
Pt /152
P \/15/4

1

cos

sin 6

(3cos?0 — 1)
sin 6 cos 0
sin® 0

TABLE 1. The associated Legendre functions, P/, up to
[ = 2 with their normalisation constants, Ny [5]

(discussed in section 2.4) that linear combinations are still solutions
to the same eigenvalue equation. Similarly, subtracting the complex
conjugate function is acceptable since the resulting orbital is wholly
imaginary. When this is multiplied by its complex conjugate to obtain
the probability density function the result is wholly real and positive.
The real orbital functions together with their chemical labels are col-

lected in table 2.

Orbital Ny »(6)

Linear comb. N, Y(p)

s V2/2 1

Pa V3 /2 sinf

Py V3/2  sinf

P- V6 /2 cosf

d,., V15/2 sinf cos 6
dy. V15 /2 sinfcos0
de_yz \/ﬁ/ll sin2 0

duy V15 /4 sin?0

d,e V10/4 (3cos?h — 1)

n/a 1/v/2m 1
11>4+]-1> 1/y/7 cosp
|1>—]—-1> 1/y/m sinp

n/a 1/v/2m 1
11>4+]-1> 1/y/7 cosp
|1>—]—-1> 1/y/m sinp
12>4]—-2> 1/\/T cos2p
|2>—]—-2> 1/y/7 sin2p

n/a 1/v/2m 1

TABLE 2. The orbital angular wave functions in real
form for s, p and d orbitals with their normalisation
constants, N, and the linear combintations of the "%

functions required [5]

The cartesian labels for the real forms of the p and d orbitals can be
obtained by converting the ¥(0, ¢) to ¥(z,y, z) using equations (17).
We need some trig identities to establish the cartesian labels for the d
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orbitals that involve double-angle trig functins. These are collected in
equations (21).

sin? 6 cos 2 = sin? § cos? p — sin® Asin? ¢ = 2% — 3 (21a)
sin? @ sin 2¢ = 2sin f cos @ sin fsin p = 2y (21Db)
3cos?0 —1=32"— (2* +y* + 2°) = 32> —r? (21c)

Figures 2, 3 and 4 show the exact forms of the probability density
functions for the angular wave functions of the s, p and d orbitals,
respectively. They appear to be three-dimensional plots, but are only
two-dimensional in terms of spherical polar coordinates, since they are
just functions of # and . The nodes in these angular functions are
planes. The number of nodal planes is equal to [, ie no nodal plane
for s orbitals, one for p orbitals (the yz plane for the p, orbital, etc)
and two for d orbitals (the zz and yz planes for the d,, orbital, etc).
In the case of d,» the two nodal planes are conical, one above and one
below the zy plane. When m = 0, ¢™¥ = 1 and so in these cases
the angular function is just the appropriately normalised associated
legendre function.

zzzzz

F1GURE 2. The angular probability density function for
the H atom s orbitals

3.5. Radial wave functions of the hydrogen electron. Students
often encounter radial wave functions or probability density functions
in the context of subshells shielding one another, or the probabilistic
nature of the electron, and may ask questions relating to the radial
functions.

We consider now the Schrodinger equation for the hydrogen electron.
As mentioned in section 2.3 it is an eigenvalue equation. The operator is
known as the Hamiltonian, given the symbol H, and is the operator for
total energy, ie kinetic energy + potential energy. It therefore returns
the total energy of the electron as its eigenvalue. Using the quantum
operator for momentum and for distance we can translate the classical
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Px py

F1GURE 3. The angular probability density functions for
the H atom p orbitals

expression for total energy,
1 Ze?
EF=—

2,2, 2
Py +p, +D0;)— ;
Qm( Y ) dreon/22 + 12 + 22

into a wave mechanical equation. In equation (22) the second energy
term is the potential energy of the electron. It is the Coulombic po-
tential energy and is negative because of the attraction between the
electron and the hydrogen nucleus. e is the fundamental charge and ¢
is the permitivity of free space. Z is the number of protons in the nu-
cleus. This is useful because ions like Het and Li** are “hydrogen-like”
in that they only have one electron.

As explained in section 3.1 it is most convenient to express the wave
function in spherical polar coordinates. The Hamiltonian operator will
therefore need to be transformed so that it acts on spherical polar coor-
dinates. This is achieved for functions using equations (17) but is more
complicated for the differential operators required for the momentum
operatorfor which the thery of partial derivatives is required.

It is a long and difficult process to construct the Schrodinger equation
for the hydrogen electron in spherical polar coordinates and to find the
radial eigenfunction solutions. Interested readers should consult one of
the advanced texts in the bibliography ([3], [4] and [5]).

The crucial point in the algebra of finding the radial eigenfunctions
is setting the boundary condition that the radial function should decay
to zero as r approaches infinity. As with the examples in section 3.2 the
boundary condition leads to a quantum number, which is the principal

(22)
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FI1GURE 4. The angular probability density functions for
the H atom d orbitals

(shell) quantum number n, which can take values 1, 2, 3,.... The full
analysis [3] yields the following expression for n:
uZe? K
- — 23
S T V75 (23)

where E is the total energy of the electron, which is defined to be neg-
ative (zero at the ionisation limit). It can also be shown that for a
given value of n, [ may take values in the range 0, 1, ..., n— 1 [3]. In
equation (23), his h/2m. Planck’s constant, h, is usually divided by 27
in the context of rotational motion, as this division converts frequen-
cies in Hertz to angular frequencies in radians per second (radians are
required for the calculus involving trig functions).u is the reduced mass
of the electron, which takes into account the fact that the electron and
nucleus both rotate around a common centre of mass (rather than the
nucleus being at the centre of the rotation of the electron).

Me X MN
=_—¢” N 24
h= (24)
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where m, is the mass of the electron and my is the mass of the nucleus.
4 provides only a slight correction to the mass of the electron since its
mass is so small compared to the mass of the nucleus. K is shorthand
for the constants in the Coulomb expression:
1
K = . (25)

47T€0

The radial eigenfunctions turn out to be the associated Laguerre
functions, which depend on the quantum numbers n and [, and there-
fore pertain to each subshell. They are shown in the table 3 with their
normalisation constants, N,.

Subshell N, p(r)

Is 1 (Z]ag)3/?.2e=/2

2 1/@V3)  (Z/a0)(2 — prje v

2p 1/(2V6)  (Z/ao)*® pre=r"/2

3s 1/(9V3)  (Z/a0)*.(6 — Gpr + p*r?)e=r"/?
(Z/ao)
(Z/a0)

B OV (Zfan 1 e
3d 1/(9v30) (Z/ag)®?.p*r2e=rr/?

TABLE 3. The radial wave functions for the subshells of

the first three shells, with their normalisation constants,
N, [5]

In table 3, ag is the Bohr radius, about 52.9 pm (1 pm = 1072 m),
which is the most probable distance of the electron from the nucleus in
hydrogen. It can be expressed as a series of constants (see section 3.6).

h2
el K
The value usually assigned to aq strictly only pertains to hydrogen
as when there are more protons in the nucleus the reduced mass of
the electron will be slightly different. From the definition of K in
equation (25) and the Coulomb energy expression, the base units of
K are kg m3 s72 C~2. Given that the base units of h are kg m? s=*
one can appreciate that equation (26) is dimensionally correct. The
constant p that appears in the radial wave functions is a collection of
constants that has dimensions of reciprocal distance.

p= 22 (27)

nao

ag =

(26)

)

Looking at the form of the radial eigenfunctions in table 3, bearing
in mind that p has units of inverse distance, the eigenfunctions all
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have dimensions of (distance)™2. This is required for them to be

normalised since the integral over all space of the square modulus of
the wave function must equal 1. The integration over all space is the
equivalent of summing over all spherical shells from r = 0 to co. Since
the surface area of a sphere is given by 4mr?,

4 /000 Y(r)?ridr = 1. (28)

The square of the wave function multiplied by 72 gives a function of in-
verse distance which, integrated over r, leads to a pure number, which
is what’s required for a probability. The normalised radial wave func-
tions for the subshells of the first three shells are plotted in figure 5.

1s ‘ ‘ ‘ ‘ 2s

3s

tlag tlag
‘p T T 0.045 T T T

g
os2 I Y™

FIGURE 5. Radial wave functions for H atom orbitals of
the first three shells

A common way to visualise radial wave functions is the radial den-
sity function (RDF). The RDF describes the probability of finding an
electron a distance r from the nucleus, ie in the shell 47r26r. Following
equation (28) the RDF is defined as 47r%y(r)?, which integrates over
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all r to give 1. The radial density functions for the subshells of the first
three shells are plotted in figure 6.

1s ‘ ‘ W ‘ ‘ __2s

tlag lag

2P ‘ __3s

3p ‘ ‘ ‘ _3d

0.04 4 éooa—
[ L L L L L [

15
rlag

F1GURE 6. Radial density functions for H atom subshells
of the first three shells

Inspection of figures 5 and 6 shows that the number of nodes shown
by the radial density function, excluding r = 0 and oo, is given by
n — [ — 1. These radial nodes are distinct from the angular nodes
discussed in section 3.4. The radial and angular nodes are both visible
in the probability density map of the xy plane for the 2s and 3d,,
orbitals in figure 7. The 2s orbital just has one radial node at the
bottom of the spike. The 3d,, orbital has no radial node but two
angular nodal planes (zz and yz planes). Careful inspection of the
2s orbital probability density contour map in the zy plane of figure 8
reveals a radial node at about r = 2 Bohr radii. The contour map for
the 3p, reveals both an angular and a radial node. The angular nodal
plane is the yz plane, and the radial node is at about r = 5 Bohr radii.

3.6. The Bohr radius. A remarkable fact about the expression for
the Bohr radius in equation (26) is that it can be derived in a simple
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FIGURE 7. Probability density for the H atom 2s and
3d,, orbitals in the zy plane
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FI1GURE 8. Probability density contour maps for the H
atom 2s and 3p, orbitals in the zy plane

classical calculation. If we picture an electron orbiting a proton such
that the electrostatic force of attraction is equal to the centripetal force,
then: - )
- (29)

r r
We then quantise angular momentum, using a quantum number, n,
and h.

por = nh (30)
By equating equations (29) and (30), eliminating v and setting n to 1,
we arrive at equation (26). This raises the question of why the solution
for r is the most probable distance rather than the average distance.
The answer is justified by Louis de Broglie in his discussion of least
action (action has the units of momentum x distance, like /) in part
5 of the first chapter of his classic book [6].

3.7. Orbital energies in the hydrogen atom. It is evident from the
line spectrum of hydrogen that the energy of an electron in a hydrogen
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atom depends only on the quantum number, n. Rearrangement of the
expression for n (equation (23)) gives the energy of the electron as a
function of the quantum number n.

prZ%et K B 7%’ K
2m2n2  2n2a
The energy of the electron is defined to be negative since it is trapped

in the attractive potential well of the nuclear attraction. This equation
may be simplified using the Rydberg constant,

Z°R
Bo= 23 (32

)
n2

E,=-

(31)

where R is the Rydberg constant with dimenions of energy. It takes a
value of 13.6 eV or 2.18 x 10718 J.

It is interesting to note that the total energy of the electron in a one-
electron atom depends only on the quantum number 7, not the subshell
quantum number /. Given knowledge of the Aufbau principle, students
often ask why the hydrogen electron’s energy doesn’t depend on [; it is
justified by equation (34). This raises some questions. Is the kinetic :
potential energy ratio the same for electrons in the same shell but
different subshell? Electrons with a greater [ value have greater angular
momentum (since ! is the quantum number for the magnitude of the
orbital angular mometnum) so they must possess greater rotational
kinetic energy.

We can find the average value of observable quantities that are inher-
ently probabilistic by working our their expectation values. In general
the expectation value, < A >, of an observable quantity, A, with the
quantum operator O is given by

< A>=<Y|O|Y > . (33)

The potential energy operator is 1/r multiplied by a constant. A very
useful result is the expectation value for the operator 1/r when applied
to the associated Laguerre functions, ie ¢ (r) [4].

(2 =< v 100 >=

The significance of this result is that the potential energy of an electron
in a one-electron atom depends only on the shell quantum number
n, not the angular momentum (subshell) quantum number [. A very
general result known as the virial theorem, which applies to classical
as well as quantum systems, imposes that the kinetic energy, T, and
the potential energy, V', for system of conservative forces, ie one where
energy isn’t exchanged with the environment, are related. In the case
of Coulombic attraction, the relation is

(34)

agn?

1
<T>:—§<V>. (35)
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So if the potential energy of the hydrogen electron is independent of the
[ quantum number then the same must be true of the kinetic energy.
Since the angular momentum of the hydrogen electron does depend
on [, then electrons with higher [ must have greater rotational kinetic
energy. Therefore they must have lower linear kinetic energy so that
their total kinetic energy is constant.

Another useful result is the expectation value < r > for the hydrogen
electron. Its value for the associated Laguerre functions is [4]

<r>= nZZaO{H%(l—l(l;l))}, (36)

which shows that < r > decreases as [ increases. This is evident from
inspection of the radial density functions in figure 6. While s orbitals
have the greatest < r > in a given shell one can appreciate how the 1/r
is equal to other subshells since there is greater probability density for
s electrons close to the nucleus due to larger number of radial nodes.

4. ORBITALS IN MOLECULES

Students should know that the chemical bonds that hold together
atomic nuclei in molecules are shared electrons between the nuclei:
the electron-nuclear electrostatic forces of attraction bind the nuclei
together. Electrons are shared in bonds as a result of the overlap and
interaction between atomic orbitals on the two bonding atoms. Before
going any further it is necessary to state the approximations involved
with these atomic orbitals in multi-electron atoms.

4.1. The orbital approximation and Slater’s Rules. The orbitals
derived for hydrogen atoms are exact solutions of the Schrédinger equa-
tion. There are no known exact solutions for the Schrodinger equation
for multi-electron atoms due to the complication of electron-electron
repulsion. Instead they are approximated to the hydrogen orbitals,
with the atomic number, Z, being taken into account. However, we
also need to take into account the shielding from the nuclear charge
that outer electrons experience from inner electrons (and electrons in
the same shell). A set of empirical rules was established by Slater to
find the shielding contribution, o, from each other electron in the atom.
The sum of these shielding contributions gives the overall shielding fac-
tor S which, when subtracted from Z, gives the Z.;; experienced by
the electron.
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Slater’s Rules

(1) o0 =0 for electrons of higher n.

(2) 0 = 0.35 for electrons of the same n (0.30 for 1s)
(3) 0 = 0.85 for s and p electrons with n one less
(4) o = 1.00 for d and p electrons with n one less
(5) o = 1.00 for electrons with n two or more less

4.2. The linear combination of atomic orbitals (LCAO). The
overlap of atomic orbitals is normally considered pictorially, with lobes
of the same phase reinforcing each other to form a bonding molecular
orbital and those of different phase cancelling, leaving an antibond-
ing molecular orbital. In the antibonding orbital most of the electron
density is on the other side of each nucleus, so that the electrostatic
repulsion between the atoms is maximised. When such a state is occu-
pied, it may result in the two atoms becoming completely disconnected.

In this pictorial approach to LCAO theory, the relative orientation
of the phases of the lobes determines whether interactions are bonding
or antibonding. This is somewhat problematic for the overlap of two
1s orbitals, say, where the phase is only positive in both orbitals. How-
ever, following the properties of eigenfunctions (section 2.4) we know
that we can choose any value for the constant in front of the eigenfunc-
tion, with it remaining a valid solution to the eigenvalue (Schrédinger)
equation. The sign is therefore unrestricted so we can assign phases to
orbital wave functions. In this way, one of two overlapping s orbitals
can be given a negative phase arbitrarily, allowing for an antibonding
combination. All of the possible phase combinations of orbitals need
to be considered when constructing a molecular orbital diagram.

Figure 9 shows a sketch of the molecular orbital diagram for Ns.
The relative energy levels of the valence atomic orbitals are shown
on the right and left, with the molecular orbitals shown in order of
energy up the middle. The dotted lines indicate which atomic orbitals
combine to form a particular molecular orbital. The most important
interactions are shown between atomic orbitals of the same type. Since
it is a homonuclear diatomic, the like orbitals will have identical energy,
which maximises the interaction between them. Antibonding orbitals
are denoted with an asterisk. The bond order of the molecule is equal
to the number of fully occupied bonding orbitals minus the number of
fully occupied antibonding orbitals.

It is helpful to consider standing waves here too. In a bonding inter-
action the overlap of the orbitals extends the length of the orbital. This
means that the resulting standing wave will have a longer wavelength
and therefore a lower energy. The opposite applies to antibonding in-
teractions. The bonding orbitals may be considered to be the result of
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constructuve interference between wave functions causing an increase
in amplitude, while antibonding orbitals result from destructive inter-
ference. This picture is easily understood by students who will have
met constructive and destructive interference in physics, and adds fur-
ther weight to the idea of electrons as waves.

Energy g

Y H atom

H atom R .

FIGURE 9. Sketch of the molecular orbital diagram for Ns

4.3. Sigma and pi bonding and antibonding orbitals. In figure 9
we see that the 2p orbitals on each N atom overlap in two different
ways, giving molecular orbitals carrying o or 7 labels. These labels
relate to the geometry of the overlap involved. Single chemical bonds
always involve sigma overlap, which is when the lobes of the two or-
bital are aligned head-on so that they meet directly between the two
nuclei associated with the two orbitals. Pi overlap is when the orbitals
overlap while they are sideways-on, ie the overlapping lobes are not
pointing at each other. The regions of overlap therefore do not lie on
the internuclear axis: they are between the nuclei but displaced from
the internuclear axis. Pi bonds are found in multiple bonds, in addition
to one sigma bond. Students will need to be able to represent these
different types of overlap and know the difference between sigma and
pi interactions.

Normally the head-on sigma alignment allows for greater overlap
between orbitals. This leads to a larger interaction and a greater energy
gap between the resulting bonding and antibonding orbitals. One way
of breaking a chemical bond is to promote an electron from the bonding
orbital to the antibonding one. The more energy required to do this,
the stronger the bond is considered to be. Sigma bonds are therefore
generally stronger than pi bonds. Pibonds, however, are made stronger
by delocalisation since extending the orbital lengthens the standing
wave, increasing its wavelength and lowering its energy relative to its
antibonding orbital.
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In figure 9 the energies of the molecular orbitals from the overlap
of the 2p electrons do not seem consistent with this approach: given
the absence of pi delocalisation, one would expect the sigma bonding
orbital to be lower in energy than the pi bonding one. The picture has
been distorted by an effect known as s-p mixing. It was a simplification
to assume that orbitals on one atom only combine with orbitals of the
same type on the other atoms. In the full treatment the combinations
of orbitals are determined by their symmetry label in the basis of the
overall molecule’s symmetry. Since the 2s and 2p, orbitals have the
same symmetry label in this homonuclear diatomic they can interact,
which causes the sigma bonding orbital from the 2p overlap to increase
in energy above the pi bonding orbitals. It is a smaller effect than
the 2p.-2p. sigma overlap since the 2s and 2p, atomic orbitals are at
different energies.

In figure 10 the radial function of the 1s orbital of two hydrogen
atoms a distance of 1.4 Bohr radii apart are added together and squared
to give the probability density of the bonding orbital, and subtracted
and squared to give the probability density of the antibonding orbital.
This is the distance between H atoms in an Hy molecule. The probabil-
ity density of the molecular orbitals along the internuclear axis shows
that most of the electron density is between the nuclei, consistent with
section 4.2. Note that in the antibonding orbital there is a nodal plane
perpendicular to the internuclear axis midway between the hydrogen
nuclei.

Bonding ‘ ‘ ‘ ‘ Ar)tibondi\ng‘

Probability density

2 - p p
nce from atom 1 nucleus/ag Distance from atom 1 nucleus/ag

F1cURE 10. Sigma bonding and antibonding LCAOs of
1s orbitals in the Hy molecule: probability density along
the internuclear axis

Figure 11 shows the probability density of the molecular orbital in
the xy plane using contour lines. It makes clear the nodal plane in the
antibonding orbital.

Figures 12 and 13 show the molecular orbital probability densities
for sigma overlap between p orbitals in two carbon atoms a distance of
2.5 Bohr radii apart. This is the distance between two carbon atoms
in an ethene molecule. The sigma bonding of carbon atoms actually
involves hybridised orbitals (see section 4.4); the figure is intended to
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Bonding Antibonding

4 0 Distancela,

F1GURE 11. Sigma bonding and antibonding LCAOs of
1s orbitals in the Hy molecule: probability density con-
tour maps in the xy plane

illustrate the general principle of molecular orbitals from the overlap
of atomic orbitals that have two lobes. Again, there is a nodal plane
perpendicular to the nuclear axis midway between the nuclei in the
antibonding orbital.

Wave functions for carbon atoms are hydrogen-like but with Z cor-
rected for the extra protons in the nucleus and the shielding by other
electrons. Following Slater’s rules in section 4.1, Z.;; for the carbon
2p electron is 6 — 2.75 = 3.25.

Bonding ‘ ‘ ‘ Antibonding
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F1cURE 12. Sigma bonding and antibonding LCAOs of
2p, orbitals: probability density along the internuclear
axis

Figure 14 shows the molecular orbital probability densities for pi
overlap between p orbitals in two carbon atoms a distance of 2.5 Bohr
radii apart. As in all molecular orbitals from pi overlap, there is a
nodal plane in the plane of the molecule. In the antibonding orbital
there is a further nodal plane perpendicular to the internuclear axis, as
is seen in the sigma antibonds.

4.4. Hybridised atomic orbitals. While hybridisation isn’t explic-
itly in the Pre-U syllabus, many teachers find it such a useful concept
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FiGURE 13. Sigma bonding and antibonding LCAOs of
2p, orbitals: probability density contour maps in the zy
plane
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FIGURE 14. Pi bonding and antibonding LCAOs of 2p,
orbitals: probability density contour maps in the zy
plane

when teaching organic chemistry that they teach it nevertheless. This
may lead to questions of how their construction may be justified and
what their wave functions look like. Their wave functions are given in
table 4 and probability density contour maps of sp? orbitals are given
in figure 16.

The bond angles in differently hybridised molecules can be predicted
using Valence Shell Electron Pair Repulsion theory, and have been
determined experimentally by x-ray diffraction (109° in methane, 120°
in BF3, etc). These bond angles are not consistent with the 90° bond
angles between p orbitals. The angles are justified by the concept of
orbital hybridisation, popular with organic chemists in particular. s
and p orbitals are considered to “mix” to give these hybrids. What is
this mixing?

We saw in section 2.4 that we can take linear combinations of the
eigenfunctions with arbitrary constants in front of each eigenfunction,
and the result is still a solution of the eigenvalue equation. Following
the comparison of the addition of eigenfunctions to the addition of
vectors in section 2.4, we can consider the p orbitals as vectors along



ORBITALS 27

their given axis. Given that the eigenfunctions are all normalised, we
can assume that the p orbital vectors are all the same length.

The hybridisation of a carbon atom involves the linear combination
of the s orbital with (3 — n) p orbitals where n is the number of pi
bonds on the carbon atom (which may not exceed two).

In the case of sp? hybridisation, four bonds around carbon point to
the corners of a tetrahedron. If we consider the carbon nucleus to be
at the centre of a cube, then the bonds would point to four corners
of the cube that are mutually diagonally opposite each other on each
face. Considering the p orbitals to be vectors whose length is equal to
half the length of an edge of the cube, we can construct the four hybrid
orbitals as:

sp’(1) = Nis + Npp, + Nppy + Nyp (37a)
sp°(2) = Nys + Nype — Nypy, — N,p. (37b)
sp*(3) = Nys — N,p. + N,p, — N,p. (37¢)
sp*(4) = Nys — N,p. — N,p, + N,p. (37d)

where the N represent normalisation constants. Since the x, y and
z axes are equivalent in a tetrahedron, the normalisation constants
in front of each p orbital are assumed to be equal. As well as being
normalised, the hybrid orbitals should also be orthogonal to each other.
To be orthogonal, the scalar (dot) product of any two of the sp® hybrids
should come to zero. Any cross terms in the multiplication come to
zero since the atomic orbitals are all defined to be orthogonal with one
another. The dot product of any two different sp® hybrids gives the
same expression from which the normalisation constants may be found:

<sp3|sp3’>:0:N52<s|s>—N5<p|p>. (38)

Since the atomic orbitals are normalised all the integrals come to 1,
leaving N2 = N?. Normalisation of all the hybrids leads to the com-
mon expression, N7 + 3N? = 1. These equations can be solved simul-
taneously, yielding Ny = N, = 1/2. With the normalisation constants
all equal to \/%? where n is the number of normalised atomic orbitals
in the linear combination, the hybrid orbital is evidently properly nor-
malised. It is also evident that the s orbital makes up 1/4 of the
probability density of the orbital, which is its fraction of the 4-orbital
hybrid. The three p orbitals are equally weighted in the wave function
as they are symmetrically equivalent in a tetrahedral environment.

Following the results from the previous paragraph, it is obvious that
two sp hybrid orbitals, pointing along the z axis will have wave func-
tions |sp >= \%(\S > + |p, >), which are clearly normalised and
orthogonal with one another.

The wave functions for the sp? hybrid orbitals are not quite so obvi-
ous. Following the arguments relating to sp? orbitals, the normalisation
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constant for the s orbital component will be Ls The sum of the squares
of the normalisation constants for the p orbitals in each hybrid must
therefore come to 2/3. We define the three sp? orbitals to be in the zy
plane such that one is pointing along the positive z axis, as shown in
figure 15. The hybrid orbital pointing along the = axis will only have
the p, orbital combined with the s orbital. We can therefore immedi-
ately deduce that the normalisation constant in front of the p, orbital
in that hybrid is 1/2/3. In the other two sp? hybrid orbitals the nor-
malisation constant in front of the p, orbital must be negative and, due
to the angles between the hybrids, will have the factor cos60° = 1/2.
The normalisation constant in front of the p, orbital will be positive
in one of these hybrids and negative in the other. The angles dictate
that a factor of cos30° = 1/3/2 appears with the py orbitals. Squar-
ing and summing these trigonometric factors gives 1. As they account
for two p orbitals the squares of these factors should sum to 2. This
is achieved by multiplying these trigonometric factors by /2. Mul-
tiplying the trigonometric factors by the overall normalisation factor
of \/ig will therefore give the correct overall normalisation constants,
which are collected in table 4. The reader is left to check that they are
normalised and orthogonal.
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FIGURE 15. Sketches showing linear combinations of s
and p orbitals that form the sp? hybrids

The geometry of the linear combinations for the sp? hybrid orbitals
is shown in figure 15, which is a standard way of depicting the orbitals,
with the shaded lobes having a positive phase. It is assumed that the
s orbital has a positive phase, but this is not the case for 2s orbitals,
where its radial node means that the exterior of the orbital (which will
be overlapping with other orbitals) has a negative phase. Given that
second-row elements most commonly exemplify these hybrid orbitals,
the normalisation constant for the s orbital will have to be made neg-
ative so that the combinations of atomic orbitals follow the scheme in
figure 15.
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Figure 16 shows the probablility density functions in the zy plane
using contour lines for the three sp? orbitals in a carbon atom using
the linear combinations of atomic orbitals given in table 4.
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FIGURE 16. The three sp? hybrid orbitals: probability
density contour maps in the xy plane

Hybrid orbital Wave function

sp*(1) (1/2)(—s + pa +py+pz)

sp°(2) (1/2)(—s+p. — p-)

Spg(g) (1/2)( S — Pz + py p-)

sp°(4) (1/2)(=8 — pz — py + D)

sp*(1) (1/V3)(—=s + v2p,)

sp*(2) (1/v/3)(=s — (1/V2)p. + v/3/2p,)
sp°(3) (1/v3)(=s — (1/V2)p. — v/3/2p,)
sp(1) (1/V2)(—s + p.)

sp(2) (1/v2)(=s — p:)

TABLE 4. The wave functions of all the sp™ orbitals for
second-row elements

4.5. Hybridised bonding and antibonding orbitals. BFjis a clas-
sic example of a molecule with an sp? hybridised central atom, and is
met by all students when studying VSEPR theory. Using the rule in
section 4.4 one would expect the fluorine atoms to be sp® hybridised.
However they may be considered to be sp? hybridised since there is also
some pi bonding between a lone pair in a p orbital on each fluorine and
the vacant p orbital on boron [7]. The average B-F bond energy in
BF; is greater than any known single bond, at 646 kJ mol~!; the B-F
bond length is also surprisingly short [7], shorter than the C-F bond
despite the smaller atomic radius of carbon.
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Figure 17 shows the bonding and antibonding molecular orbitals in

BF; from overlap of the sp? hybrid orbitals on boron and fluorine. The
plot uses contour lines to visualise the probability density in the plane
of the molecule. Electron density from the inner electrons on B and F,
and from the pi interactions between boron and fluorine are not shown.

In the full molecular orbital treatment of a polyatomic molecule,

all the atomic orbitals on all the atoms in the molecule need to be
taken together, with their group theoretical label to determine which
orbitals can interact. The overlap of hybridised orbitals is therefore a
simplification, but very often a useful one to gain a reasonable general
impression of the bonding.
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FI1GURE 17. The three sigma bonds and the three sigma
antibonds of BF5 formed from overlap of sp? hybrid or-
bitals on boron and fluorine: probability density contour
maps in the xy plane
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