CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

9791 CHEMISTRY

9791/03

Paper 3 (Part B Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	$\mathbf{9 7 9 1}$	03

1 (a) (i) Cathode/positive electrode
Electrons gained/reduction
(1)
(1)
[2]
(ii) $\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}), 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mid \mathrm{Pt}$

Correct species right way around and Pt.
State symbols, (commas and) vertical lines correct.
(iii) +0.02 V
(iv) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{H}^{+}+6 \mathrm{e}^{-}+\mathrm{CO}_{2}$
(b) (i) $\Delta G=-6 \times 96500 \times 1.21$
$=-700590=-701\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(ii) Negative sign of ΔG indicates that the reaction is feasible.
(iii) $\Delta G=\Delta H-T \Delta S ; \Delta S=\frac{\Delta H-\Delta G}{T}$
$\Delta S=\frac{-726000-701000}{298}$
$\Delta S=-83.9 / 83.89$
$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
(iv) $T=\Delta H^{\ominus} / \Delta S^{\ominus}=-726000 /-83.9$
$=8653 \mathrm{~K}$
Above this temperature the reaction ceases to be feasible.
[Total: 14]
2 (a) (i) (Decrease across Period 4) increasing nuclear charge with constant shielding/electrons in same shell so increasing nuclear attraction/pull.
(ii) TM pattern relatively constant. orbitals ($3 d_{x y}, 3 d_{x z}$ and $3 d_{y z}$) point between.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	$\mathbf{9 7 9 1}$	03

(iii) Energy absorbed in promoting electron (from lower to higher energy 3d orbitals)
is in visible region of EM spectrum.
Colour seen is complementary colour (of colour corresponding to absorbed frequency).
(d) (i) (Large value of K indicates) forward reaction (much) more favourable/equilibrium lies to the right.
Increase in number of moles/from 4 to 7 accompanying forward reaction makes $\underline{\Delta S_{(s y s t)}}+$ ve.
or
Bonds broken = bonds formed in complex so ΔH small hence, from $\Delta G=\Delta H-T \Delta S$, given ΔG is negative, ΔS is (probably) positive.
(ii) Optical
(iii) No plane or line of symmetry in the ion/not superimposable on its mirror image.
(iv)

(1) $+(1)$
[Total: 18]
3 (a) Cu electrode and $\mathrm{Cu}^{+}(\mathrm{aq})$ as one half-cell (on right)
$\mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}^{+}(\mathrm{aq})$ with Pt electrode as other half-cell (on left)
All solutions 1 molar (or equimolar in $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$half-cell)
Salt bridge and high resistance voltmeter
(b) $\mathrm{Cu}^{+} /$reactant is being both oxidised and reduced at the same time.
(c) (i) $\left[\mathrm{Cu}^{2+}(\mathrm{aq})\right] /\left[\mathrm{Cu}^{+}(\mathrm{aq})\right]^{2}$
(ii) $\operatorname{In} K=\frac{1 \times 96500 \times 0.36}{8.31 \times 298}(=14.0(2854166))$

$$
\begin{equation*}
K=1.24 \times 10^{6} \tag{1}
\end{equation*}
$$

(iii) $K=1.24 \times 10^{6}=1 /\left[\mathrm{Cu}^{+}(\mathrm{aq})\right]^{2}$
$\left[\mathrm{Cu}^{+}(\mathrm{aq})\right]=\sqrt{ }\left(1 / 1.24 \times 10^{6}\right)=8.99 \times 10^{-4}(3$ sig figs needed $)$
(d) $K_{\text {sp }}=\left[\mathrm{Cu}^{+}(\mathrm{aq})\right]\left[\mathrm{Br}^{-}(\mathrm{aq})\right]$
$\left[\mathrm{Br}^{-}(\mathrm{aq})\right]=3.20 \times 10^{-8} / 5.72 \times 10^{-7}=0.0559\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
[2]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	$\mathbf{9 7 9 1}$	$\mathbf{0 3}$

4
(a) (i) Carboxylic Acid Level
(ii) Step $1 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}+\mathrm{CO}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOMgBr}^{2}$
Step $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOMgBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Mg}(\mathrm{OH}) \mathrm{Br}$
Step $3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{HCl}+\mathrm{POCl}_{3}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{SOCl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{SO}_{2}+\mathrm{HCl}$
Step 1 = down a level/4 to 3
Step 2 and Step $3=$ moving within a level/stays at 3
(b) (i) Ester
(1)
(ii) $\mathrm{HOOCC}_{6} \mathrm{H}_{4} \mathrm{COOH} / \mathrm{ClOCC}{ }_{6} \mathrm{H}_{4} \mathrm{COCl}$
$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(iii) Hydrolysis
(iv) ${ }^{-} \mathrm{OOCC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}$

$$
\begin{equation*}
\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \tag{1}
\end{equation*}
$$

(v) Reduction
(vi) $\begin{aligned} & \mathrm{HOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH} \\ & \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\end{aligned}$
(c) (i) Electrophilic Substitution
(ii) Lewis acid $/ \mathrm{AlCl}_{3} / \mathrm{FeBr}_{3} / \mathrm{AlBr}_{3}$
(iii) (Harder to brominate because) side chains electron withdrawing/negative inductive effect.
Reduces charge/electron density of ring/ π cloud/(ring) deactivating
Reduces susceptibility to attack by/reduces attraction for electrophile
[1]

5 (a) (i) Fructose/anticlockwise-rotating isomer has stronger optical activity.
(ii) Graph is equivalent to $\ln \left(\mathrm{C}_{0} / \mathrm{C}_{\mathrm{t}}\right)$ vst/reference to the first order rate equation.
Straight line through origin/therefore proportional, indicates (pseudo) first order.
(iii) (labelled) 'triangle' correctly drawn on graph

Allow alternative method using first order rate equation min^{-1}
(b) (i) shape of the active site
(ii) ${ }^{-} \mathrm{OOCCH}=\mathrm{CHCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow{ }^{-} \mathrm{OOCCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}$gradient calculated in range $0.0363-0.0368$
(iii)

trans/E
cis/Z
$(1)+(1)$
[2]
(iv)

With H /lowest priority pointing away
Remaining groups in order of decreasing priority
clockwise $=R /$ anticlockwise $=S$
(v) Optically inactive product $/ \mathrm{H}^{+}$non-stereoselective Racemate forms
(c) (i) Carbonyl group planar
(1)

Equal chance of attack (by CN^{-}) from either side
(ii) (2) $R,(3) S$ and (2)S(3)R,
due to a plane/line of symmetry.
Meso

6 (a) (i) $\mathrm{P}=$

IR absorption at 1700 for $\mathrm{C}=\mathrm{O}$ and a (broad) absorption at 3000 for O-H (so carboxylic acid)
3 signals $=3$ environments; (ratio 6:1:1)
Doublet at $1.25=2 \times \mathrm{CH}_{3}$; singlet at $12=\mathrm{OH}$ and multiplet $=\mathrm{CH}$ next to CH_{3} groups
(ii) $\mathbf{Q}=$

IR absorption at 1750 for $\mathrm{C}=\mathrm{O}$ but no $\mathrm{O}-\mathrm{H}$ absorption so ester
3 signals $=3$ environments; (ratio 3:2:3)
Singlet $=\mathrm{CH}_{3}$ next to $\mathrm{C}=\mathrm{O}$ or $-\mathrm{O}-$; quadruplet $=\mathrm{CH}_{2}$;
triplet $=\mathrm{CH}_{3}$ next to CH_{2}
(b) (i) Nucleus has overall magnetic moment/nucleus has spin $1 / 2$
in an external magnetic field energy levels (of two different orientations) split.
Energy difference corresponds to (absorption of) radio frequency waves. (1)
(ii) $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si} /$ tetramethylsilane/TMS
(iii) Electrons orbiting around the proton shield it from external field.

The closer a proton is to an electronegative atom the more electron density is withdrawn from around it/more deshielded,
so the further downfield/left the signal is/larger chemical shift/higher the frequency absorbed.
[Total: 15]

