MARK SCHEME for the May/June 2013 series

9792 PHYSICS

9792/03

Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme	Syllabus	Paper	
		Pre-U – May/June 2013	9792	03	
		Section A			
1	(a) (i) F = (r = (F = (GMm/r ² plus values on top line 6.37×10^{6}) + (0.39 × 10 ⁶) = 6.76 × 10 ⁶ 724 (N)		(1) (1) (1)	[3]
	(ii) a = I	F/m = 724.4/83 = 8.73		(1)	[1]
	(iii) a = v	r^2/r therefore v = \sqrt{ar}		(1)	
	= √($8.73 \times 6.76 \times 10^{\circ}) = 7680$		(1)	[2]
	(iv) circu time = 2 c	mference = $2\pi r = 2\pi \times 6.76 \times 10^{6}$ = circumference/speed t × 6.76 × 10 ⁶ /7680 = 5530 s (= 1 hr, 32 min, 18 sec)		(1) (1) (1)	[3]
	(b) e.g. jump	ing from a wall, doing a high jump, diving into a swim	ming pool	(1)	[1]
	(c) the astro Any one	naut is not weightless from there is no air resistance on the astronaut		(1)	
	Any one	the force on the astronaut is causing his accepted to the astronaut is not moving relative to his surfacefrom you are in free fallyou have friction of air on you	eleration (towards roundings	s the Earth (1))
		your surroundings are moving relative to you		(1)	[3]
				[Total:	13]
2	(a) (i) T = 2	$2\pi \sqrt{(2.6 / 9.81)} = 3.23 \mathrm{s}$		(1)	[1]
	(ii) ω =	$2\pi/T = 1.94 \text{ rad s}^{-1}$		(1)	[1]
	(iii) A = E = OR mgh	2.6 sin 2.3 = 0.1043 m $\frac{1}{2}mA^2\omega^2 = \frac{1}{2} \times 0.87 \times 0.1043^2 \times 1.94^2 = 0.0178 J$ n = 2.6 - 2.6 cos 2.3 (= 2.09 × 10 ⁻³) = 0.87 × 9.81 × (2.09 × 10 ⁻³) = 0.0178 J		(1) (1) (1) (1)	[2]

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9792	03

(b) straightforward details

e.g. measure the period with a stopwatch, OR use a light gate measure the angle of swing with a protractor) OR with ruler an correct calculation repeat the procedure to include large angles

enhanced details

MAX 3

MAX 3

e.g. preliminary trials to get measuring device in the right place make the period long by the use of a long support string method of release clear coordination between angle and period for single or half swings do the experiment in a vacuum repeat procedure at same angle

sophisticated details# MAX 1

clear diagram of light gate procedure for single swings digital recording, i.e. slow motion, and explanation of how actual times are obtained

OVERALL MAXIMUM 5 with no diagram

[6]

[Total: 10]

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9792	03

3 (a)

5

capacitance /μF	potential difference / V	charge / μC	energy / μJ
4.0	9.0 [1]	36	162
3.0	3.0 [1]	9 [1] ecf	13.5 [1] ecf
X = 9.0 [1]	3.0	27 [1]	40.5 [1]
		from Q = CV	from $\frac{1}{2}$ QV or = $\frac{1}{2}$ CV ²

[7]

	(b)	(i)	1 2	36 (μC) 432 (μJ)	(1) (1)	[2]	
		(ii)	ene	ergy is lost in the charging process	(1)		
			e.g.	while charging the area beneath the QV graph is a triangle of area $\frac{1}{2}$ QV	(1)	[2]	
					[Total:	11]	
4	(a)	(i)	3.8	$\times 10^{-5} \times 20 = 7.6 \times 10^{-4}$ (Wb)	(1)	[1]	
		(ii)	E = = (-	(-) $dN\phi/dt = 7.6 \times 10^{-4} / 0.0050$ -) 0.152 (V)	(1) (1)	[2]	
	(b)	(i)	3.8 = 6.	× 10 ⁻⁵ × 800 / 0.005 .08 (V)	(1) (1)	[2]	
		(ii)	no e all e	energy loss in secondary as second coil terminals are not connected energy loss is in primary or core	(1) (1)	[2]	
		(iii)	a tra exa	ansformer or equivalent mple of use	(1) (1)	[2]	
					[Tota	l: 9]	
5	(a)	volu all o no to t	ume collis force he tir	of molecules very much smaller than volume of container ions elastic on molecules except on contact OR time of collision is negligible compar me between collisions	(1) (1) ed (1)		

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9792	03
(b) moveme molecule random that are of	nt of particles in a fluid (liquid or gas) es in fluid collide with particles movement of large particles (just) visible (under a microscope)		

1 mark for each point to maximum 3 [3] (c) (i) T = 296 K (1)

average k.e. = $3/2 \text{ kT} = 3/2 \times 1.38 \times 10^{-23} \times 296 = 6.13 \times 10^{-21} (\text{J})$ (1) [2]

(ii)
$$6.13 \times 10^{-21} = \frac{1}{2} \times 5.31 \times 10^{-26} \times \langle c^2 \rangle$$
 (1)

$$\sqrt{\langle c^2 \rangle} = \sqrt{\left(2 \times 6.13 \times 10^{-21} / 5.31 \times 10^{-26}\right)} = 481 \text{ (m s}^{-1})$$
 (1) [2]

(d)	(i)	inte	ernal energy is sum of kinetic and potential energies of the molecules	(1)	[1]
	(ii)	1. 1. 2.	no change, <u>and</u> 2. no change as internal energy (includes) the random kinetic energy of the molecules internal potential energy is due to elastic potential energy betwee	(1) (1) en	
		3.	molecules internal energy decreases because molecules have lower average speeds	(1) (1) (1)	[5]

6 (a) loss of mass =
$$(1.6744 - 1.6730 - 0.00091) \times 10^{-27}$$
 kg (1)
= 4.89×10^{-31} kg (1)
E = mc² = $4.89 \times 10^{-31} \times (3 \times 10^8)^2 = 4.40 \times 10^{-14}$ (J) (1) [3]

(b) (i)
$$(4.40 - 2.3) \times 10^{-14} = 2.1 \times 10^{-14} (J)$$
 (1) [1]

(ii)
$$2.1 \times 10^{-14} \text{ J} = \frac{1}{2} \text{mv}^2$$
: $v = \sqrt{\left(2 \times 2.1 \times 10^{-14} / 9.11 \times 10^{-31}\right)} = 2.15 \times 10^8 \text{ ms}^{-1}$ (1)
momentum = mv = $9.11 \times 10^{-31} \times 2.15 \times 10^8 = 1.96 \times 10^{-22} \text{ Ns}$ (1) [2]

(c) directions opposite and arrow of electron very much larger than arrow of proton (1) [1]

 (d) third body was a neutrino had no charge and small mass diagram showing different angles possible neutrino takes some of the energy 1 mark for each point made to maximum 3 + 1 for equation + 1 for correct neutrino symbol (5) [5]

$${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e + {}^{0}_{0}v$$

other relevant point

[Total: 12]

	Page 6		6	Mark Scheme	Syllabus	Paper	-
				Pre-U – May/June 2013 9792		03	
7 (a)	(a)	(i)	the t	total power radiated by a star		(1)	[1]
		(ii)	the i	ntensity of radiation at a distance from the star (at the	Earth)	(1)	[1]
	(b)	(i)	the ((surface) temperature of the star		(1)	[1]
		(ii)	the e	elements present on the star speed of recession of the star		(1) (1)	[2]
	(c)	(i)	v = ; = ;	$3.0 imes 10^8 imes 26.5 imes 10^{-9}$ / 516.7 $ imes 10^{-9}$ 1.54 $ imes 10^7$ (m s ⁻¹)		(1) (1)	[2]
		(ii)	d = y = (v/H ₀ OR = 1.54×10^{7} / 2.3×10^{-18} 6.7×10^{24} (m)		(1) (1)	[2]
						[Tota	al: 9]

	Page 7			Mark Scheme	Syllabus	Paper	•			
				Pre-U – May/June 2013	9792	03				
	Section B									
8	8 (a) (i)		 (i) (speed is constant but) direction is continuously changing (towards centre) velocity is changing) with time (so body accelerates) by Newton's 2nd Law a force is required / for acceleration towards centre 				[3]			
		(ii)	a = v	v²/r		(1)	[1]			
	(b)	b) $(R - mg) = m \times (v^2/r)$ $(R - 200) = 200/9.8 \times (4.7^2/2.8)$ giving R = 161 + 200 = 361 (N)		(1) (1)	[2]					
	(c)	(i)	Mas Integ Iden I = 1 $I = \int$	is of small ring dm = $\rho 2\pi r.dr$ gral set up with limits from r ₁ to r ₂ (r ₁ = 0, r ₂ =R) itifies and substitutes total mass of disc M= $\rho \pi R^2$ $\frac{1}{2} MR^2$ $\int (r^2 \Delta m) = \int_2^{r^2} p 2\pi r^3 dr = [\frac{1}{2}p\pi R^4] = \frac{1}{2}MR^2$		(1) (1) (1) (1)	[4]			
		(ii)	10.1 t = 6	= 44.8 × (1.40 – 0)/t 5.21 (s)		(1) (1)	[2]			
	(iii)	t = (∆t =	$t = (118 \times 1.40)/10.1 = 16.4 s$ Δt = 16.4 - 6.2 = 10.2 (s)		(1) (1)	[2]			
	(iv)	1.	angular momentum is conserved I increases so ω decreases ω decreases so T increases Allow last 2 marks even if conservation of k.e. is sugge	ested	(1) (1) (1)	[3]			
			2.	$T_1 = 2\pi/1.40 = 4.49$ s $T_2 = 4.49 + 0.66 = 5.15$ so $I_1 \omega_1 = I_2 \omega_2$; 118 × 1.40 = $I_2 \times 1.22$; $I_2 = 135$ kg m Do not allow any marks here if conservation of k.e. is u	$_{2}^{\omega_{2}}$ = 1.22 rad s ⁻ used	^{.1} (1) (1)	[3]			
				uses principle of conservation of angular momentum		(1) [Total:	: 20]			

	Page 8		Mark Scheme	Syllabus	Paper	
			Pre-U – May/June 2013	9792	03	
9	(a) Rest	sultan ce (ex	it (force) rerted on a body) is proportional to the rate of change i	n momentum	(1) (1)	[2]
	(b) dm. dm.	/dt = /dt = /	$F/v = 34700 \text{kN}/2.6 \text{km s}^{-1}$ 13 300 (kg s ⁻¹)		(1) (1)	[2]
	(c) (i)	Wor	king line shown and clear conversion of natural logs to	exponentials	(1)	[1]
	(ii)	In ta m/m ∆v _r =	ble _{bo} = 0.88 = 7.7(4)		(1) (1)	[2]
	(iii)	8 po One Best	ints correctly plotted (ecf their table values) mark lost for each error, minimum of zero t fit smooth curve drawn		(2) (1)	[3]
	(iv)	With With Diffe	$ \begin{array}{ll} V = 2.6 \times 10^3 ; (m/m_o) = 0.15 & m = 0.15 \times 2.04 \times 10^6 \\ V = 8.0 \times 10^3 ; (m/m_o) = 0.54 & m = 0.54 \times 2.04 \times 10^6 \\ \text{erence in mass} = 796 000 \text{kg} \end{array} $	= 306 000 kg = 1 101 600 kg	(1) (1) (1)	[3]
	(d) (i)	E = -	$-(GM_{\rm E}m_{\rm S})/(R+h)$		(1)	[1]
	(ii)	The (in m	e amount of work done on the mass noving the mass) from infinity to the point (where the s	atellite is)	(1) (1)	[2]
	(iii)	KE = PE = -9.0	= $0.5 \times 152 \times (7.7 \times 10^3)^2 = 4.5 \times 10^9$ = total energy - KE = $-4.5 \times 10^9 - 4.5 \times 10^9 = -9.0 \times 10^{-11} \times 5.98 \times 10^{24} \times 152$ r	10 ⁹	(1) (1)	
		r = 6	5.736×10^7		(1)	
		<i>h</i> =	$6.736 \times 10^{7} - 6.36 \times 10^{9} = 3.76 \times 10^{9} \text{ m}$		(1)	[4]
					[Total:	2 0]

	Page 9			Mark Scheme	Syllabus	Paper	
				Pre-U – May/June 2013 9792			
10	(a)	(i)	Rec	procal of capacitance		(1)	[1]
		(ii)	I = (= 50	Q/t = (120)/2.4 mA (i.e. getting the power of 10 correct)		(1) (1)	[2]
		(iii)	(Dur The so le rises	ing the charging process charge builds up on the capa increasing charge repels oncoming charge more and r ess charge is added to the plates each second OR as there is less p.d. across resistance of circuit 1 so less	icitor plates) nore p.d. across cap current	(1) acitor (1)	[2]
	(b)	(i)	Rea Man	sonable sized tangent drawn to graph at t = 30 ms datory mark for any marks on this guestion		(1)	
			and Rate	so Q = 42 mC e of flow of charge between 1.40 and 1.54 (C s ⁻¹)		(1) (1)	[3]
		(ii)	1 2 3	<i>t/CR</i> has no units so CR has same units, s, as t e.g $60 \times 10^{-3} = 120 \times 10^{-3} \times e^{-0.02/CR}$ <i>CR</i> = 0.0289 C from (a)(i) is 120 × 10 ⁻³ C / 2000 V = 6.0 × 10 ⁻⁵ E		(1) (1) (1)	
			4	e.g. so $R = 0.0289/6.0 \times 10^{-5} = 480 \ (\Omega)$ Mark for each of following terms:		(1)	
			т	$- Q_0/CR$		(1)	
				e ^{-t/CR}		(1)	[6]
	(c)	(i)	Quo Rofe	te Coulomb's law	2	(1)	
			i.e. Math	$\delta W = F \delta x$ [ignore references to 'against the field'] nematical integration statement with limits.		(1)	
			W =	$\int \delta W$ from ∞ to r or $W = \sum \delta W$ from ∞ to r gration statement only (ignore limits omission)		(1)	
			∫Q₁C See	$Q_2/4\pi\epsilon_0 x^2$ dx substitution W = Q ₁ Q ₂ /4πε ₀ [1/r – 1/∞] [ignore any co	nfusion resulting	(1)	
			from	misplaced minus signs. Look for essential idea]		(1)	[5]
		(ii)	Expl (no (ains that the zero of p.e. is at infinity credit for just inserting the limit in the integration)		(1)	[1]

[Total: 20]

	Page 10		Mark Scheme	Syllabus	Pape	r
			Pre-U – May/June 2013	9792	03	
11	(a)	Basic a More referer	answer: Motion affects the rate of clocks (or rate at whic detail: Moving clocks run slow / time passes mor nce frame	ch time passes) e slowly in a m	(1) noving	
					(2)	
		Idea o Compa	f comparison between rest and moving frames: ared to a clock at rest		(1)	
		Maxim	um 3 marks			[3]
	(b)	The ef Calcul Calcul	fect is so small that it can be neglected. ation of time dilation factor: $\gamma \sim 1 + 0.5 \times 10^{-14} = 1.0000$ ation of time difference = $5 \times 10^{-15} \times 3 \times 10^{5}/30 = 5 \times 10^{5}$	00000000005 ⁻¹¹ s (i.e. 50ps)	(1) (1) (1)	[3]
	(c)	(i) 1. (A	048 (not using approximation) ward 1 mark only if approximation has been used to giv	ve γ = 1.045)	(2)	[2]
		(ii) Ti Ti Ao Tr	me elapsed on station clock = $3.0 \times 10^5 / 30 = 10^4 \text{ s} = 2$ me elapsed on train clock = $10^4 / 1.048 = 9542 \text{ s}$ djustment required = 458 seconds (7 minutes 38 second ain clock must be put forward	h, 47 min 40 sec ds)	: (1) (1) (1) (1)	[4]
		 (iii) Agree. Traveller has lived through a different amount of time than a person stayed at the station Less time has elapsed for traveller so he has travelled into the future relative to the station i) Correct basic shape: Horizontal from γ-intercept (at v = 0) γ close to 1 (<1.5) for v< 50 ms⁻¹, rising rapidly for large v γ = 1 (marked on γ-axis) when v = 0 Curve appears asymptotic to speed = 100 m/s		ime than a perso o the future relati	n who (1) ve (1)	[2]
	(d)			(1) (1) (1) (1)	[4]	
	(e)	Any two from: No time dilation effects No length contraction / mass increase with velocity Infinite energies (from E = mc ²) Faster communications No limiting speed for travel (or information transfer)				
					(2)	[2]
						l: 20]

	Page 11			Mark Scheme	Syllabus	Paper	,
				Pre-U – May/June 2013	9792	03	
12	(a)	It is r It has Nucle Maxi	main s str ear i mun	ly empty space ucture / atoms are not fundamental natter has extremely high density n 2 marks		(1) (1) (1)	[2]
	(b)	(i) 2 -	(F) = 229 I This is co	$= \frac{1}{4 \pi \times 8.85 \times 10^{-12}} \times \frac{(1.6 \times 10^{-19})^2}{(1 \times 10^{-15})^2}$ N is very large / ezuivalent to a weight of 23 kg i.e. recomparable to macroscopic forces	ognition that this	(1) (1) force (1)	[3]
		(ii)	1. 2.	Strong and attractive because it balances/over repulsion. Short range because it has no macroscopic effe compared to electrostatic forces over the distance of all nucleons would clump together	comes proton-p cts / it is neg the atom / othe	oroton (1) ligible erwise (1)	[2]
	(c)	(i)	∆t ≈	$\frac{h}{2\pi mc^2}$		(1)	[1]
		(ii) [Meso The Stroi Max	ons (have mass so they) cannot travel at or above the maximum distance a meson can travel is about (no m ng interaction cannot exceed the distance a meson ca mum mark 2	speed of light ore than) $R \sim c\Delta$ n travel during Δ	(1) t (1) t (1)	[2]
	((iii) (Use	of $R \sim c\Delta t$ to give an expression for mass: $m \approx \frac{h}{2\pi cR}$	$\left(\approx \frac{h}{2\pi c x^2 \Delta t}\right)$	(2)	[0]
	((iv) (State Mus	e that about 1/5 of a proton mass and 400 electron ma t be a new kind of subatomic particle.	sses.	(1) (1) (1)	[3] [2]
	(d)	(i) <u> </u> 	For a The Hen	a long range they must exist for a long time (Δt must be uncertainty in energy must be very small (ΔE must be ce rest mass <i>m</i> (= $\Delta E / c^2$) must also be (arbitrarily) sm	e large without li very small) nall	imit) (1) (1) (1)	[3]
		(ii) F e e	Full expla ener	credit for an explanation in terms of exchange partic ains either the increased rate of exchange of force-ca gy/momentum associated with each exchange at shor	les that identifie rriers or the incre t distance.	s and eased	
		e	e.a.	At shorter distances the exchange particles exist for a	a shorter time so	o thev	

e.g. At shorter distances the exchange particles exist for a shorter time so they can exchange more energy/transfer more momentum and create a stronger force.

e.g. At short distances the field is stronger so more exchange particles can be created and exchanged thereby increasing the force.

Give part credit for answers that refer to the coulomb's law / inverse-square law (i.e. as *r* gets smaller $1 / r^2$ gets bigger) but limit maximum to 1 mark if exchange particles are not mentioned. (2) [2] Maximum 2 marks

[Total: 20]

Page 12			2	Mark Scheme	Syllabus	Paper	,	
				Pre-U – May/June 2013	9792	03		
13	(a)	i) (i) The Law of Conservation of Energy OR The 1 st Law of Thermodynamics.						
		(ii)	The <u>Nee</u>	Second Law of Thermodynamics <u>d to identify both laws for 1 mark</u>		(1)	[1]	
	(b)	The Second Law (no mark) If time runs from past to future entropy increases, but if time is reversed entropy decreases						
	(c)	(i)	Entr The	opy is related to the arrangement or organisation of pa original state is low entropy and the final state high en	rticles in the egg tropy	g (1) (1)		
			The prob	original state is low entropy because it is more ordered ability or is realised in fewer ways than the final state	d or has a lower	(1)	[3]	
		(ii)	The Mixi The	re are a very large number of ways in which the particle ng is a random process number of ways in which the egg can be in a scra h	es can be arrang mbled/mixed_st	ged. (1) (1) ate is		
			grea Hen The	iter than the number of ways it can be in an unmixed si ce it is much more likely to end up in a mixed state mixed state represents a (macroscopic) equilibrium imum mark 3	tate	(1) (1) (1)		
			(N.B	these marks can be observed in either c(i) or c(ii))			[3]	
	(d)	Idea of ir Acc high	a that ncrea cept t n entr	t the direction from past to future is aligned with or de se of entropy (or the direction of ever increasing 'disor he idea that the universe is moving from a state of I opy or from a state of low probability to one of higher p	fined by the dir der') ow entropy to c probability	ection (2) one of	[2]	
	(e)	(i)	Thei so th	re is only one way in which the universe can exist nere is no distinction between past and future (nothing	changes)	(1) (1)	[2]	
		(ii)	Yes (e.g.	 if the gas molecules start in some ordered state all released from one corner of the box) the arrow would point toward an equilibrium state 	e in which the	(1)		
			distr	ibuted more or less evenly throughout the container.		(1)		
			Yes Disc num ways	 while entropy is increasing. sussion of number of ways linked to different macrosc ber of ways of finding the majority in a single small sp s of finding them spread throughout the container. 	opic states – e. bace, large num	(1) g. low ber of (1)		
			Not Not Max	possible to define an arrow of time when the molecules possible to define an arrow of time when entropy is clo imum 3 marks	s are evenly spr se to a maximu	ead. (1) m. (1)	[3]	

Page 13	Mark Scheme	Syllabus	Paper	,		
	Pre-U – May/June 2013	9792	03			
(iii) Idea mov wou reve OR	(iii) Idea that random particle motions have a small but non-zero probal moving all the particles into a small region once again. In this case would decrease for a while before increasing once again so there cou reversal.					
Idea occu entr Max	that it is a dynamical equilibrium so fluctuations away ar and some might be quite large, providing periods of opy decreases – again a reversal of time's arrow. imum 2 marks	from equilibrium time during whic	n will :h (2)	[2]		
(f) Irreversi System/ Random indisting Systems that have Equilibri Look for which ca Answer	bility requires large numbers of particles universe must have started in a state of low probability shuffling results in large scale states that can exist uishable ways move from large-scale states that have low probability a high probability um states can exist in many more ways than non-equil : large numbers / low entropy initial state / random sh in exist in large numbers of different ways must give some explanation for irreversibility to gain fu m 3 marks	/entropy in a large numl y to large-scale s ibrium states. uffling / toward s Il marks	(1) (1) ber of (1) states (1) (1) states	[3]		

[Total: 20]