MARK SCHEME for the May/June 2014 series

9792 PHYSICS

9792/03

Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2			Mark Scheme	Syllabus	Pape	ər	
				Pre-U – May/June 2014	9792	03	
				Section A			
1	(a)	(i)	ω = 2 = 0.2	$2\pi/T = 2\pi/27.5$ 228 rad s ⁻¹		[1] [1]	
		(ii)	spee	$ed = 2\pi r/T = 2\pi \times 16.0/27.5 = 3.66 \mathrm{ms^{-1}}$		[1]	
		(iii)	acce	eleration = v^2/r = 3.66 ² /16 = 0.835 m s ⁻¹		[1]	
		(iv)	0 (rad))s ⁻²		[1] [1]	[6]
	(b)	(pai by ູ (pai	r of w gravit r of fo	veight of passenger is) force (passenger exerts) <u>on</u> the y orce seat exerts on passenger is) force passenger exe	Earth rts <u>on</u> the seat	[1] [1] [1]	[3]
	(c)	(i)	force = 62	e = mass \times acceleration $1.4 \times 0.835 = 52.1 \text{ N}$		[1] [1]	
		(ii)	resu W ai S ar One	Itant always towards centre of rotation rrows the same on passenger in all positions rows so $W + S$ can (approximately) equal resultant off for each mistake to minimum zero.		[1] [1] [2]	[6]
							[15]
							[]
2	(a)	(<i>F</i> = <i>v</i> = app F =	=) GM 2πr/ ly giv ma c	$Mm/r^2 = ma$ $T \text{ or } \omega = \pi/T$ ring $GMm/r^2 = m (2\pi r/T)^2 \text{ or } mr (2\pi/T)^2$ cancelling m and rearranging to show only $T^2 = kr^3$ and	d states <i>k</i> is con	[1] [1] [1] stant [1]	[4]
	(b)	reor corr = 2.	rganis rect s .01 ×	se as $M = 4\pi^2 r^3 / T^2 G$ at some stage or see $(365 \times 24 \times 10^{11})^3 / (365 \times 24 \times 3600)^2 \times 10^{30}$ kg	< 3600) (6.67 × 10 ⁻¹¹)	[1] [1] [1]	[3]
	(c)	nee use Ear	d to ł the N th)	nave something rotating around the Earth with period n Moon or a man-made satellite at known distance (from	neasured the centre of the	[1] Ə [1]	[2]
	(d)	acc e.g. (1 n	ept va rotat nark o	alid example tion of galaxies, statement and explanation only for examples correct but not Newtonian physics)		[2]	[2]
							[11]

Page 3			Mark Scheme	Syllabus	Pape	r	
				Pre-U – May/June 2014	9792	03	
3	(a)	(eleo posi	ctric f tive o	field strength is) force per unit charge charge		[1] [1]	[2]
	(b)	(i)	elect = 1.6 = 1.8	tric field strength = $Q/4\pi\varepsilon_0 r^2$ $6 \times 10^{-19}/4\pi \times 8.85 \times 10^{-12} \times (2.8 \times 10^{-10})^2$ $34 \times 10^{10} \text{ N C}^{-1}$		[1] [1] [1]	
		(ii)	Forc = 1.8	e = Ee OR working from scratch $34 \times 10^{10} \times 1.6 \times 10^{-19} = 2.94 \times 10^{-9} N$		[1] [1]	[5]
	(c)	(i)	attra A>F R≈A	ction (A) from 4 nearest negative ions and repulsive (F R N/2	R) from positive ion	ıs [1] [1] [1]	
		(ii)	zero	(N)		[1]	
		(iii)	to m	ove it back into place		[1]	
		(iv)	an e of m	quilibrium position or opposes the charge inimum potential energy (for the whole network)		[1] [1]	[7]
							[14]

4

t/s	V/V	ln <i>V</i>
0	12.0	2.48
10	4.25	1.45
20	1.09	0.09
30	0.51	-0.67
40	0.19	-1.66
50	0.066	-2.72

(a)	all In V/V values for 2 marks deduct 1 mark for each mistake to minimum of zero	[2]	[2]
(b)	2 marks for all points plotted with + or – half a small square deduct 1 mark for each mistake to minimum of zero	[2] [2]	[2]
(c)	reading for 20 s circled	[1]	[1]

Page 4			Mark Scheme	Syllabus	Pape	r
			Pre-U – May/June 2014	9792	2 03	
	(d)	$\log v_{0}$ e.g. 2 OR use c t_{\frac{1}{2}} in	alue drops by 0.693 for a factor of 2 4.158 fall is 6 half lives ; $t_6 = 40$ s so half life = 6.7 ± 0.2 of gradient (– 0.104 ± 0.003) range 6.5 to 7.7 (s)	5	[1] [1] [1] [1]	[2]
	(e)	calculates number of half lives: e.g. 100 s is 100/6.7 = 15 half lives original charge = $CV = 2.4 \times 10^{-6} \times 12 = 2.88 \times 10^{-5}$ therefore charge remaining = $2.88 \times 10^{-5} / 2^{15} = 8.8 \times 10^{-10} \text{ C}$		[1] [1] [1] [1]	[4]	
		Uses V = V _o $e^{-\lambda \times 100}$ or similar expression V = 12 $e^{10.3} = 4.0 \times 10^{-4}$ Q = C × V = 4.0 × 10 ⁻⁴ × 2.4 × 10 ⁻⁶ = 9.6 × 10 ⁻¹⁰ (C)				
	(f)	(i) (i) L	capacitance unit = C/V; resistance unit = V/A = Vs/C unit of <i>CR</i> = CVs/VC = s		[1] [1]	
		(ii) (r	CR = 9.6s narked correctly at 9.6 and 48.0		[1] [1]	[4] [15]
5	(a)	(i) \	$T = 4.2 \times 10^{-3}/306 = 8.3 \times 10^{-3}/T$ T = 8.3 × 306/4.2 = 605 K		[1] [1]	
		(ii) v =	vork done = $p \Delta V$ = 1.12 × 10 ⁵ × (8.3 × 10 ⁻³ – 4.2 × 10 ⁻³ = 1.12 × 10 ⁵ × 4.1 × 10 ⁻³ = 460 J	3)	[1] [1]	[4]
	(b)	300² mear	+ 400 ² + 500 ² + 1000 ² = 1 500 000 n square speed = 375 000; rms speed = 612 m s ⁻¹		[1] [1]	[2]
	(c)	(i) ¹	$k_2m < c^2 > = 3kT/2; 0.5 \times 4.7 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times \sqrt{(< c^2 > = \sqrt{2.7 \times 10^5})} = 520 \mathrm{m s^{-1}}$	10 ⁻²³ × 306/2	[1] [1]	
		(ii) a	at twice the temperature k.e. is twice so speed is \times 1.41 DR via speed $\propto \sqrt{T}$	$= 730 \mathrm{ms^{-1}}$	[1]	[3]
	(d)	peak area	moves to the right beneath both graphs approximately equal		[1] [1]	[2]
						[11]

	Page 5		Mark Scheme	Syllabus	Paper	
			Pre-U – May/June 2014	9792	03	
6	(a)	(i) k.e. = 3.0	= $\frac{1}{2}mv^2$ = 0.5 × 6.6 × 10 ⁻²⁷ × (3.0 × 10 ⁷) ² 0 × 10 ⁻¹² J		[1] [1]	
		(ii) reor r = (= 1.2	ganise equation (at some stage) to $r = Q_{\alpha}Q_{Au}/4\pi\epsilon_{0}E$ 79 × 1.6 × 10 ⁻¹⁹ × 2 × 1.6 × 10 ⁻¹⁹)/ (4 × 3.14 × 8.85 × 10 2 × 10 ⁻¹⁴ m	$0^{-12} imes 3.0 imes 10^{-12}$	[1]) [1] [1]	[5]
	(b)	headings quarks:	s: quarks, leptons and force carriers or bosons up, down electron, neutring		[1]	
		force car deduct o	riers: photon, gluon, ne mark for each one incorrectly placed to minimum z	ero	[3]	[4]
						[9]
7	(a)	wavelen so 5800 <i>T</i> = 520 r	gth of maximum intensity inversely proportional to tem K <i>I T</i> = 480 nm/520 nm nm × 5800 K/480 nm = 6280 K	perature	[1] [1]	[2]
	(b)	$L = 4\pi\sigma r$ $= 4.8 \times 1$ $r = \sqrt{4.3}$	$r^{2} T^{4} \text{ so } r^{2} = L/4\pi\sigma T^{4}$ $0^{29}/4\pi \times 5.67 \times 10^{-8} \times 6280^{4} = 4.33 \times 10^{20}$ $\overline{3 \times 10^{20}} = 2.08 \times 10^{10} \text{ m}$		[1] [1] [1]	[3]
						[5]

	Page 6		Mark Scheme Syllabus		Paper	
¥			Pre-U – May/June 2014	9792	03	
			Section B Candidates answer three questions			
8	(a) ato and	ms/n d diffe	uclei of an element contain the same number of protor ring numbers of neutrons	IS	[1] [1]	[2]
	(b) (i)	a ne (plus	eutron in the nucleus decays into a proton and an elect s an antineutrino)	ron	[1]	[1]
	(ii)	half	life = $0.698/1.44 \times 10^{-11} = 4.8 \times 10^{10}$ year		[1]	[1]
	(c) (i)	A _{Rb} = = 0.9 valic	= $A_0 e$ (to the power $-1.44 \times 10^{-11} \times 4.0 \times 10^9$) 94 I comment that little change has occurred		[1] [1] [1]	[3]
	(ii)	posi strai sligh	tive intercept on the R axis ght line sloping gently upwards it curve of slightly lower gradient towards the end		[1] [1] [1]	[3]
	(iii)	a lar need need	ger ratio implies an older sample d to know the initial value of R d to know the initial amount/percentage of rubidium		[1] [1] [1]	[3]
	(iv)	any leak	sensible suggestion e.g. half life too long; meteorite co age; rick melting; non-uniformity in rock crystal	ontamination;	[1]	[1]
	(d) (i)	reca rear	Ils F = mv ² /r for circular motion and F = BQv range to r = mv/BQ		[1] [1]	[2]
	(ii)	curv	e of larger radius starting from common entry point inte	o field	[1]	[1]
	(iii)	any 0.68 ∆B =	correct method leading to $8 \times 87/86 = 0.688$ $= 7.9 \times 10^{-3}$ (T)		[1] [1] [1]	[3]
						[20]
9	(a) (inc pro	duced portic) emf is produced across the coil onal to the rate of change of flux linkage		[1] [1]	[2]
	(b) cha cur ma opp acc	ange i rent ir gnetic positic celera	n flux linkage or induced emf/p.d. in coil A or B nduced/power in circuit for A or no induced current/po c field around coil A or no magnetic field around B on to motion of magnet in A or no opposition to motion tor is less than g/de-acceleration is g/magnet in free f	ower in coil B in B fall in B	[1] [1] [1] [1] [1]	[5]

Page 7			Mark Scheme Syllabus			r
			Pre-U – May/June 2014	9792	03	
	(c) (i) E/n	$d = d\phi/dt = 2.0/400 = 5.0 \times 10^{-3} \text{ (Wb s}^{-1}\text{)}$		[1]	
	 (ii) magnet is accelerating so rate of change of flux is increasing, hence increase (in magnitude) of E direction of emf opposes change producing it so change in sign (answers accepted in terms of N and S pole) 			[1] [1]	[3]	
	(d) (i) $v = \omega r = 2\pi f r$ = 2 × 3.14 × 50 × 1.9 × 10 ⁻² = 5.97 m s ⁻¹			[1] [1]	[2]	
	(ii) E=	$(-)BAN\omega\sin(\omega t)$		[1]	[1]
	(iii)	$BAN\omega \sin(2\pi t/T)$ 7 sin(2 $\pi \times 0.0018/0.020$) 91 V		[1] [1] [1]	[3]
	(iv) time (1.8	e axis correctly labelled at $T = 20 \text{ ms}$ for one cycle , 0.9 and 5.0,1.7) points that sine curve seems to go th	rough	[1] [1]	[2]
	(v) vert hori	ical coil moving parallel to lines of flux so not cutting the zontal coil has zero flux linkage but maximum cutting ra	em ate	[1] [1]	[2]
						[20]
10	(a) (f (f e	rom Fiq rom Fiq quate t	g 10.1) $\delta \theta = v \delta t/r$ g 10.2) $\delta \theta = \delta v/v$ o eliminate $\delta \theta$		[1] [1] [1]	[3]
	(b) (i) (R ₁	+ R_2) cos θ = mg		[1]	
	(ii) (R ₁	+ R_2) sin θ		[1]	
	(iii) divis	sion of (ii) by (i)		[1]	[3]
	(c) (i) ene only	rgy cannot be created or destroyed v transferred from one form to another		[1] [1]	[2]
	(ii) reca sub:	all and use $\rho = M/V$ stitute and arrange to $\rho = (2I)/\pi l R^4$		[1] [1]	[2]
	(iii) corr $\rho =$	ect substitution into equation 1800 kg m ⁻³		[1] [1]	[2]
	(iv) num	nber of revolutions = $6700 \times 60/2\pi = 64000$		[1]	[1]
	(v) loss = ½ = 3.	in rotational k.e. = $\frac{1}{2}I(\omega_{f}^{2} - \omega_{i}^{2})$ × 0.176 x(6700 ² - 2880 ²) 22 × 10 ⁶ (J)		[1] [1] [1]	[3]

	Page 8		•	Mark Scheme	Syllabus	Pape	r
			Pre-U – May/June 2014 9792			03	
		(vi)	pow	er = $3.22 \times 10^6/6.67 = 4.83 \times 10^5$ (W)		[1]	[1]
	(vii)		torqı = 0.1 = 10	ue = <i>Iα</i> 176 × (6700 – 2880)/6.67 1 N m or equivalent unit		[1] [1] [1]	[3]
							[20]
11	(a)	(i)	kine kine	tic energy and (electrical) potential energy tic energy positive and potential energy negative		[1] [1]	[2]
		(ii)	any elect work othe	two from: tron is in a bound state a must be done to remove the electron/ionise the atom rwise the electron would have enough energy to escap	n De	[1] [1] [1]	
						[MA	AX 2]
		(iii)	(abs	olute) size of PE > (absolute) size of KE		[1]	[1]
	 (b) using diagrams or written explanations any three from: electron waves form standing wave patterns in atom more detail of standing wave patterns energy level associated with standing wave pattern intermediate values of energy not allowed correct reference to equation for hydrogen levels electrons can only make (quantum) jumps from one orbit to another 					[3]	
		and explanation of stable ground state there is a lowest allowed energy level when $\lambda = 2\pi r$ so electron cannot fall into the nucleus		[3] [M#	AX 5]		
	(c)	(i)	unce	ertainty in the (x-component) of momentum of the elect	tron	[1]	[1]
		(ii)	unce	ertainty in the (x-component) of the position of the elec	tron	[1]	[1]
		(iii)	$\Delta x d$	ecreases and Δp increases		[1]	[1]
		(iv)	link l incre	between momentum and k.e. eased uncertainty in momentum implies increased unc	ertainty in k.e.	[1] [1]	[2]
		(v)	for v mak if the	ery small orbits the uncertainty in the k.e. becomes lar e the total energy positive e total energy becomes positive the electron will escap	ge enough to e	[1] [1]	[2]
	(d)	(i)	relat	ed to the probability of finding the electron at that posit	tion in the atom	[1]	[1]

i age J	Mark Scheme Syllabus			•
	Pre-U – May/June 2014	9792	03	
(ii) any two the (3D a proba density density	o from:) electron standing wave pattern in the atom ability distribution for the position of the electron insi related to probability of electron being found in that related to amplitude squared (intensity) of wave (fu	de the atom part of the atom nction)	[2] 1	
				[20]
12 (a) (i) freely fa idea tha	alling pendulum will not swing, so period is infinite at it is apparently weightless		[1] [1]	[2]
(ii) lunar po gravity	endulum has longer time period is weaker on the Moon		[1] [1]	[2]
(b) diagram in rest o idea tha use of t	n(s) showing light path in moving clock is greater th clock at the speed of light is constant for both observers <i>T</i> = distance/ <i>c</i> so longer path leads to longer period	an light path I	[2] [1] [1]	[4]
(c) the met any one time dil in the s there w there is	thod will not work e from ation affects the rate at which time passes so it affe same way vill be no time difference between the two clocks s no relative motion between the two clocks	cts all clocks	[1] [1]	[2]
(d) (i) the real transfer the amp (ii) the hea the arro	I system has to work against frictional forces so ener rred to heat plitude of the oscillation decays with time at increases the entropy of the universe ow of time points from low entropy (past) to high ene	ergy is ergy (future)	[1] [1] [1] [1]	[2] [2]
(e) (i) the ator (un-dec if the at to the s when th	m/apparatus/cat are all in one of two definite states cayed/un-triggered/alive or decayed/triggered/dea tom decays during the hour then the atom/apparatu second state at that instant he box is opened the existing state is discovered	s at every mome ad ıs / cat all change	ent [1] Ə [1] [1]	
(ii) the stat functior as time un-dec when th definite	te of the atom/system is described by a superpositi ns representing the two possible states goes on the decayed state becomes more promine ayed state becomes less prominent he box is opened the wave function collapses into o states	on of wave ent and the ne of two	[1] [1] [1]	

	Page 10		Mark Scheme Syllabu		Paper	
			Pre-U – May/June 2014	9792	03	
	(iii)	the s func the c a dif disco wave	state of the atom/system is described by a superpositions representing the two possible states decayed and un-decayed states exist in two parallel wo ferent observer opens the box in each parallel world an overs a live cat and in another he discovers a dead on e function collapse	on of wave orlds nd in one he e. There is no	[1] [1] [1] [MA	X 6]
						[20]
13	(a) (i)	basi addi	c description e.g. degree of disorder tion of extra detail e.g. a measure of the number of wa	ys of	[1]	
		distr	ibuting energy or particles among available states		[1]	[2]
	(ii)	the e	entropy of the universe tends to a maximum (does not	decrease)	[1]	[1]
	(iii)	more	e energy in the system ease the number of ways in which this can be distribute	ed	[1] [1]	[2]
	(b) (i)	W =	Q ₁ -Q ₂		[1]	[1]
	(ii)	(Q ₁	$-Q_2)/Q_1$		[1]	[1]
	(iii)	zero			[1]	[1]
	(iv)	if eff of th there there	iciency is 100% then Q ₂ is zero and there is no increas e environment (heat sink) e is a decrease in entropy of the heat source as heat G e is a net decrease in entropy of the universe (violating	se in entropy 2₁ is extracted the 2nd law)	[1] [1] [1]	[3]
	(v)	max this Q ₂ / 7 max	imum efficiency when the entropy change is zero is when $Q_1/T_1 = Q_2/T_2$ $T_2 = 300/800 = 0.375$ imum efficiency = 1 – 0.376 = 0.625 (62.5%)		[1] [1] [1] [1]	[4]
	(c) (i)	flow flow whe	from hot to cold increases the total entropy from cold to hot decreases the total entropy n heat is transferred from body 1 to body 2, Q/T_2 must	t be greater than	[1]	101
		Q/T	₁ , otherwise the 2nd law is violated. Only possible if T_1	> 12	[1]	[2]
	(ii)	entro later	opy of water decreases as it turns to ice It heat is released to the environment	total entrony	[1] [1]	
		rises	spy of environment moreases by a greater amount (so		[1]	[3]
						[20]