MARK SCHEME for the May/June 2014 series

9792 PHYSICS

9792/03
Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9792	03

Section A

1 (a) (i) $\omega=2 \pi / T=2 \pi / 27.5$

$$
\begin{equation*}
=0.228 \mathrm{rad} \mathrm{~s}^{-1} \tag{1}
\end{equation*}
$$

(ii) speed $=2 \pi r / T=2 \pi \times 16.0 / 27.5=3.66 \mathrm{~ms}^{-1}$
(iii) acceleration $=v^{2} / r=3.66^{2} / 16=0.835 \mathrm{~ms}^{-1}$
(iv) $\begin{aligned} & 0 \\ & (\mathrm{rad}) \mathrm{s}^{-2}\end{aligned}$
(b) (pair of weight of passenger is) force (passenger exerts) on the Earth by gravity
(pair of force seat exerts on passenger is) force passenger exerts on the seat
(c) (i) force $=$ mass \times acceleration
$=62.4 \times 0.835=52.1 \mathrm{~N}$
(ii) resultant always towards centre of rotation
W arrows the same on passenger in all positions
S arrows so $W+S$ can (approximately) equal resultant
One off for each mistake to minimum zero.

2 (a) $(F=) G M m / r^{2}=m a$
[1]
$v=2 \pi r / T$ or $\omega=\pi / T$
apply giving GMm/ $r^{2}=m(2 \pi r / T)^{2}$ or $m r(2 \pi / T)^{2}$
$\mathrm{F}=$ ma cancelling m and rearranging to show only $T^{2}=k r^{3}$ and states k is constant
(b) reorganise as $M=4 \pi^{2} r^{3} / T^{2} G$ at some stage or see $(365 \times 24 \times 3600)$
correct substitution $M=4 \pi^{2}\left(1.50 \times 10^{11}\right)^{3} /(365 \times 24 \times 3600)^{2} \times\left(6.67 \times 10^{-11}\right)$ $=2.01 \times 10^{30} \mathrm{~kg}$
[3]
(1 mark only for examples correct but not Newtonian physics)

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9792	03

3 (a) (electric field strength is) force per unit charge positive charge
(b) (i) electric field strength $=Q / 4 \pi \varepsilon_{0} r^{2}$

$$
=1.6 \times 10^{-19} / 4 \pi \times 8.85 \times 10^{-12} \times\left(2.8 \times 10^{-10}\right)^{2}
$$

$=1.84 \times 10^{10} \mathrm{~N} \mathrm{C}^{-1}$
(ii) Force $=E e$ OR working from scratch
$=1.84 \times 10^{10} \times 1.6 \times 10^{-19}=2.94 \times 10^{-9} \mathrm{~N}$
(c) (i) attraction (A) from 4 nearest negative ions and repulsive (R) from positive ions $A>R$
$R \approx A / 2$
(ii) zero (N)
(iii) to move it back into place
(iv) an equilibrium position or opposes the charge of minimum potential energy (for the whole network)

4

t / s	V / V	$\ln V$
0	12.0	2.48
10	4.25	1.45
20	1.09	0.09
30	0.51	-0.67
40	0.19	-1.66
50	0.066	-2.72

(a) all In V/V values for 2 marks
deduct 1 mark for each mistake to minimum of zero
[2] [2]
(b) 2 marks for all points plotted with + or - half a small square deduct 1 mark for each mistake to minimum of zero

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9792	03

(d) \log value drops by 0.693 for a factor of 2
e.g. 4.158 fall is 6 half lives ; $\mathrm{t}_{6}=40 \mathrm{~s}$ so half life $=6.7 \pm 0.2 \mathrm{~s}$

OR

use of gradient (-0.104 ± 0.003)
$\mathrm{t}_{\frac{1}{2}}$ in range 6.5 to 7.7 (s)
(e) calculates number of half lives:
e.g. 100 s is $100 / 6.7=15$ half lives
original charge $=C V=2.4 \times 10^{-6} \times 12=2.88 \times 10^{-5}$
therefore charge remaining $=2.88 \times 10^{-5} / 2^{15}=8.8 \times 10^{-10} \mathrm{C}$

OR

uses $V=V_{0} e^{-\lambda \times 100}$ or similar expression
$\mathrm{V}=12 \mathrm{e}^{10.3}=4.0 \times 10^{-4}$
$\mathrm{Q}=\mathrm{C} \times \mathrm{V}=4.0 \times 10^{-4} \times 2.4 \times 10^{-6}$
$=9.6 \times 10^{-10}(\mathrm{C})$
(f) (i) capacitance unit $=\mathrm{C} / \mathrm{V}$; resistance unit $=\mathrm{V} / \mathrm{A}=\mathrm{Vs} / \mathrm{C}$
unit of $C R=\mathrm{CVs} / \mathrm{VC}=\mathrm{s}$
(ii) $C R=9.6 \mathrm{~s}$
marked correctly at 9.6 and 48.0

5 (a) (i) $V / T=4.2 \times 10^{-3} / 306=8.3 \times 10^{-3} / T$
$T=8.3 \times 306 / 4.2=605 \mathrm{~K}$
(ii) work done $=p \Delta V=1.12 \times 10^{5} \times\left(8.3 \times 10^{-3}-4.2 \times 10^{-3}\right)$

$$
\begin{equation*}
=1.12 \times 10^{5} \times 4.1 \times 10^{-3}=460 \mathrm{~J} \tag{1}
\end{equation*}
$$

(b) $300^{2}+400^{2}+500^{2}+1000^{2}=1500000$
mean square speed $=375000 ; \quad$ rms speed $=612 \mathrm{~m} \mathrm{~s}^{-1}$
(c) (i) $1 / 2 m\left\langle c^{2}\right\rangle=3 k T / 2 ; \quad 0.5 \times 4.7 \times 10^{-26} \times\left\langle c^{2}\right\rangle=3 \times 1.38 \times 10^{-23} \times 306 / 2$

$$
\begin{equation*}
\sqrt{\left(<c^{2}\right\rangle}=\sqrt{2.7 \times 10^{5}}=520 \mathrm{~m} \mathrm{~s}^{-1} \tag{1}
\end{equation*}
$$

(ii) at twice the temperature k.e. is twice so speed is $\times 1.41=730 \mathrm{~m} \mathrm{~s}^{-1}$

OR via speed $\propto \sqrt{T}$
(d) peak moves to the right
area beneath both graphs approximately equal

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9792	03

6 (a) (i) k.e. $=1 / 2 m v^{2}=0.5 \times 6.6 \times 10^{-27} \times\left(3.0 \times 10^{7}\right)^{2}$
$=3.0 \times 10^{-12} \mathrm{~J}$
(ii) reorganise equation (at some stage) to $r=Q_{\alpha} Q_{A u} / 4 \pi \varepsilon_{0} E$
$r=\left(79 \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19}\right) /\left(4 \times 3.14 \times 8.85 \times 10^{-12} \times 3.0 \times 10^{-12}\right)$
$=1.2 \times 10^{-14} \mathrm{~m}$
(b) headings: quarks, leptons and force carriers or bosons
quarks: up, down
leptons; electron, neutrino, force carriers: photon, gluon, [3] [4] deduct one mark for each one incorrectly placed to minimum zero

7 (a) wavelength of maximum intensity inversely proportional to temperature so $5800 \mathrm{~K} / T=480 \mathrm{~nm} / 520 \mathrm{~nm}$
$T=520 \mathrm{~nm} \times 5800 \mathrm{~K} / 480 \mathrm{~nm}=6280 \mathrm{~K}$
[1]
(b) $L=4 \pi \sigma r^{2} T^{4}$ so $r^{2}=L / 4 \pi \sigma T^{4}$
$=4.8 \times 10^{29} / 4 \pi \times 5.67 \times 10^{-8} \times 6280^{4}=4.33 \times 10^{20}$
$r=\sqrt{4.33 \times 10^{20}}=2.08 \times 10^{10} \mathrm{~m}$

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9792	03

Section B

Candidates answer three questions
8 (a) atoms/nuclei of an element contain the same number of protons
(b) (i) a neutron in the nucleus decays into a proton and an electron (plus an antineutrino)
(ii) half life $=0.698 / 1.44 \times 10^{-11}=4.8 \times 10^{10}$ year
(c) (i) $A_{R b}=A_{0} \mathrm{e}$ (to the power $-1.44 \times 10^{-11} \times 4.0 \times 10^{9}$)
$=0.94$
valid comment that little change has occurred
(ii) positive intercept on the R axis
straight line sloping gently upwards
slight curve of slightly lower gradient towards the end
(iii) a larger ratio implies an older sample
need to know the initial value of R
need to know the initial amount/percentage of rubidium
(iv) any sensible suggestion e.g. half life too long; meteorite contamination;
leakage; rick melting; non-uniformity in rock crystal
(d) (i) recalls $\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}$ for circular motion and $\mathrm{F}=\mathrm{BQv}$
rearrange to $r=m v / B Q$
(ii) curve of larger radius starting from common entry point into field
(iii) any correct method leading to
$0.68 \times 87 / 86=0.688$
$\Delta \mathrm{B}=7.9 \times 10^{-3}(\mathrm{~T})$

[20]

9 (a) (induced) emf is produced across the coil proportional to the rate of change of flux linkage
(b) change in flux linkage or induced emf/p.d. in coil A or B
current induced/power in circuit for A or no induced current/power in coil B
magnetic field around coil A or no magnetic field around B
opposition to motion of magnet in A or no opposition to motion in B accelerator is less than g / de-acceleration is $\mathrm{g} /$ magnet in free fall in B

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9792	03

(c) (i) $\mathrm{E} / \mathrm{n}=\mathrm{d} \phi / \mathrm{dt}=2.0 / 400=5.0 \times 10^{-3}\left(\mathrm{~Wb} \mathrm{~s}^{-1}\right)$
(ii) magnet is accelerating so rate of change of flux is increasing,
hence increase (in magnitude) of E
direction of emf opposes change producing it so change in sign (answers accepted in terms of N and S pole)
(d) (i) $v=\omega r=2 \pi f r$
$=2 \times 3.14 \times 50 \times 1.9 \times 10^{-2}=5.97 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $E=(-) B A N \omega \sin (\omega t)$
(iii) $E=B A N \omega \sin (2 \pi t / T)$
$=1.7 \sin (2 \pi \times 0.0018 / 0.020)$
$=0.91 \mathrm{~V}$
(iv) time axis correctly labelled at $T=20 \mathrm{~ms}$ for one cycle
(1.8, 0.9 and $5.0,1.7$) points that sine curve seems to go through
(v) vertical coil moving parallel to lines of flux so not cutting them
horizontal coil has zero flux linkage but maximum cutting rate

10 (a) (from Fig 10.1) $\delta \theta=v \delta t / r$
(from Fig 10.2) $\delta \theta=\delta \mathrm{v} / \mathrm{v}$
(b) (i) $\left(R_{1}+R_{2}\right) \cos \theta=m g$
(ii) $\left(R_{1}+R_{2}\right) \sin \theta$
(iii) division of (ii) by (i)
(c) (i) energy cannot be created or destroyed
only transferred from one form to another
(ii) recall and use $\rho=M / V$
substitute and arrange to $\rho=(2 I) / \pi l \mathrm{R}^{4}$
(iii) correct substitution into equation
$\rho=1800 \mathrm{~kg} \mathrm{~m}^{-3}$
(iv) number of revolutions $=6700 \times 60 / 2 \pi=64000$
(v) loss in rotational k.e. $=1 / 2 I\left(\omega_{\mathrm{f}}{ }^{2}-\omega_{\mathrm{i}}{ }^{2}\right)$
$=1 / 2 \times 0.176 \times\left(6700^{2}-2880^{2}\right)$
$=3.22 \times 10^{6}(\mathrm{~J})$

Page 8	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9792	03

(vi) power $=3.22 \times 10^{6} / 6.67=4.83 \times 10^{5}(\mathrm{~W})$
(vii) torque $=I \alpha$
$=0.176 \times(6700-2880) / 6.67$
$=101 \mathrm{Nm}$ or equivalent unit

11 (a) (i) kinetic energy and (electrical) potential energy
kinetic energy positive and potential energy negative
(ii) any two from:
electron is in a bound state
work must be done to remove the electron/ionise the atom
[1]
otherwise the electron would have enough energy to escape
(iii) (absolute) size of $\mathrm{PE}>$ (absolute) size of KE
(b) using diagrams or written explanations any three from:
electron waves form standing wave patterns in atom
more detail of standing wave patterns
energy level associated with standing wave pattern
intermediate values of energy not allowed
correct reference to equation for hydrogen levels
electrons can only make (quantum) jumps from one orbit to another
and explanation of stable ground state
there is a lowest allowed energy level
when $\lambda=2 \pi r$
so electron cannot fall into the nucleus
[MAX 5]
(c) (i) uncertainty in the (x-component) of momentum of the electron
[1] [1]
(ii) uncertainty in the (x-component) of the position of the electron
(iii) Δx decreases and Δp increases
(iv) link between momentum and k.e.
increased uncertainty in momentum implies increased uncertainty in k.e.
(v) for very small orbits the uncertainty in the k.e. becomes large enough to make the total energy positive if the total energy becomes positive the electron will escape
(d) (i) related to the probability of finding the electron at that position in the atom

Page 9	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9792	03

(ii) any two from:
the (3D) electron standing wave pattern in the atom
a probability distribution for the position of the electron inside the atom density related to probability of electron being found in that part of the atom density related to amplitude squared (intensity) of wave (function)

12 (a) (i) freely falling pendulum will not swing, so period is infinite
idea that it is apparently weightless
(ii) lunar pendulum has longer time period
gravity is weaker on the Moon
(b) diagram(s) showing light path in moving clock is greater than light path
in rest clock
idea that the speed of light is constant for both observers
use of $T=$ distance $/ c$ so longer path leads to longer period
(c) the method will not work
any one from
time dilation affects the rate at which time passes so it affects all clocks in the same way
there will be no time difference between the two clocks
there is no relative motion between the two clocks
(d) (i) the real system has to work against frictional forces so energy is transferred to heat
the amplitude of the oscillation decays with time
(ii) the heat increases the entropy of the universe
the arrow of time points from low entropy (past) to high energy (future)
(e) (i) the atom/apparatus/cat are all in one of two definite states at every moment (un-decayed/un-triggered/alive or decayed/triggered/dead
if the atom decays during the hour then the atom/apparatus/cat all change to the second state at that instant
when the box is opened the existing state is discovered
(ii) the state of the atom/system is described by a superposition of wave functions representing the two possible states
as time goes on the decayed state becomes more prominent and the un-decayed state becomes less prominent
when the box is opened the wave function collapses into one of two definite states

Page 10	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9792	03

(iii) the state of the atom/system is described by a superposition of wave functions representing the two possible states
the decayed and un-decayed states exist in two parallel worlds
a different observer opens the box in each parallel world and in one he discovers a live cat and in another he discovers a dead one. There is no wave function collapse

13 (a) (i) basic description e.g. degree of disorder
addition of extra detail e.g. a measure of the number of ways of distributing energy or particles among available states
(ii) the entropy of the universe tends to a maximum (does not decrease)
(iii) more energy in the system
increase the number of ways in which this can be distributed
(b) (i) $W=Q_{1}-Q_{2}$
(ii) $\left(Q_{1}-Q_{2}\right) / Q_{1}$
(iii) zero
(iv) if efficiency is 100% then Q_{2} is zero and there is no increase in entropy of the environment (heat sink)
there is a decrease in entropy of the heat source as heat Q_{1} is extracted
there is a net decrease in entropy of the universe (violating the 2nd law)
(v) maximum efficiency when the entropy change is zero
this is when $Q_{1} / T_{1}=Q_{2} / T_{2}$
$Q_{2} / T_{2}=300 / 800=0.375$
maximum efficiency $=1-0.376=0.625(62.5 \%)$
(c) (i) flow from hot to cold increases the total entropy
flow from cold to hot decreases the total entropy
when heat is transferred from body 1 to body $2, Q / T_{2}$ must be greater than Q/ T_{1}, otherwise the 2nd law is violated. Only possible if $T_{1}>T_{2}$
(ii) entropy of water decreases as it turns to ice
latent heat is released to the environment
entropy of environment increases by a greater amount (so total entropy rises)

