MARK SCHEME for the May/June 2015 series

9792 PHYSICS

9792/02

Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	Mark Scheme Syllabus		Paper				
1	(a)	(i)	A increasing and C decreasing an E negative and (d positive d positive constant	<u>– way</u>	/Julie 2013	9/92	[1] [1] [1]	[3]
		(ii)	speed/velocity is	s constant/20 n	າ s ⁻¹ or	zero acceleration		[1]	[1]
	(b)	cor ran	rect method used ge from 0.43 to 0.	in B .45 (m s⁻²)				[1] [1]	[2]
	(c)	(i)	region	metres		small squares			
			A and C B D and E	624 to 640 216 to 232 1200 +600 o	r 1800	156 to 160 54 to 58 300 + 150 or 450		[1] [1] [1]	
			one small square 2630 to 2680 (m	e is equivalent to)	o 4 (m))		[1] [1]	[5]
		(ii)	straight lines ins 5 to 15 small squ 20 to 60 (m)	tead of curves uares	or or or	difficulty of counting squ 3 to 10 small squares 12 to 40 (m)	ares	[1] [1] [1]	[3]
									[14]
2	(a)	(i)	regains original	shape/length <u>w</u>	hen di	storting force is removed		[1]	[1]
		(ii)	permanent disto	rtion or does no	t regai	n original shape/length		[1]	[1]
		(iii)	considerable pla breaks or high re	estic deformation	n∕abso aking	rbing a lot of energy befo	ore it	[1]	[1]
		(iv)	no/(very) little p	lastic deformatio	on/abs	orbs little energy before	it breaks	[1]	[1]
	(b)	car gol	n be beaten into sl d (leaf), silver (de	heets corations); lead	(sheet); copper (tray)		[1] [1]	[2]
	(c)	lon mo mo	g/chain <u>molecule</u> lecules uncoil lecules/substanc	<u>s</u> e stretches at ei	nd or t	otally uncoiled at end		[1] [1] [1]	[3]
									[9]
3	(a)	549 J kę	93.6 or 5488 g ⁻¹ or m² s ⁻²					[1] [1]	[2]

Page 3		3	Mark Scheme Syllabus			
			Cambridge Pre-U – May/June 2015	9792	02	2
	(b)	(i)	5493.6 × 68 or 373 551 5493.6 × 68/(5 × 60 × 60) or 373 551/(5 × 60 × 60) 20.7 or 20.8 (W)		[1] [1] [1]	[3]
		(ii)	2.49×10^{6} 5.5 or 6 (bars)		[1] [1]	[2]
						[7]
4	(a)	(i)	zero		[1]	[1]
		(ii)	(10 Ω in parallel with 30 Ω gives resistance of) 7.5 (Ω) 9.5 (V)		[1] [1]	[2]
		(iii)	5.0 (Ω) (5 Ω in parallel with 30 Ω gives) 4.29 (Ω) (12 × 4.29/(7 + 4.29) =) 4.56 (V)		[1] [1] [1]	[3]
	(b)	V ² / 3.0	<i>R</i> or in numbers (W)		[1] [1]	[2]
						lol
5	(a)	(i)	waves of the same frequency or same wave reflected back on itself travelling in opposite directions (in the same space)	:	[1] [1]	[2]
		(ii)	(on one half of the cycle) the molecules either side approach the no (on the next half cycle the molecules) will be moving away from the pressure will be changing (from above to below atm. pressure)	de node	[1] [1] [1]	[3]
	(b)	(i)	$\frac{(69.0 \times 10^{9}/2710)^{\frac{1}{2}}}{5046 \ (m \ s^{-1})}$		[1] [1]	[2]
		(ii)	(distance travelled by wave =) 2×0.85 (m) or 1.70 (m) (1.70/5050 =) 3.37×10^{-4} (s) or 0.337 ms		[1] [1]	[2]
		(iii)	electronic clock/stopwatch/timer start and stop clear experimental detail (e.g. wires connected to rod and plate)		[1] [1] [1]	[3]
						[12]

Page 4		4	Mark Scheme Syllabus		ber		
			Cambridge Pre-U – May/June 2015 9792				
6 (a) ((i)	α -particle source directing a stream of α -particles towards a thin gold foil detector with indication that it can rotate around almost 360°	[1] [1]	[2]		
		(ii)	few deflected/most go straight through nucleus (very) small/atom mostly empty space backscattering observed nucleus (positively) charged/same charge as α-particle	[1] [1] [1] [1]	[4]		
		(iii)	the size of the nucleus is (very) much smaller than the one drawn	[1]	[1]		
	(b)	(i)	${}^{238}_{92}U \rightarrow {}^4_2\alpha + {}^{234}_{90} Th$ ${}^4_2\alpha \text{ or } {}^4_2He$	[1]			
			$^{238}_{92}\text{U}$ and thorium nuclide according to candidate's $\alpha-\text{particle}$	[1]	[2]		
		(ii)	any three from a different isotope of uranium is used/uranium–235 neutrons can be used to bombard the uranium nuclei fission can make the uranium nuclei break into parts this can release many more neutrons that can cause a chain reaction				
			heat water/steam turns (turbine and) generator	[3]	[3]		
					[12]		
7	(a)	any use lam det elec des	r five from e of a suitable named metal up must be UV unless sodium or similar is used ector of emitted electrons ctron detector suitable for very low currents ccription of use				
		eleo	ctrons emitted	[5]	[5]		
	(b)	(i)	same shape graph coming down to zero / at the same point parallel on the right but lower	[1] [1]	[2]		
		(ii)	maximum kinetic energy is not dependent on intensity or number of electror emitted is directly proportional to intensity	ıs [1]	[1]		
	(c)	(i)	$3.68 \times 10^{-19} (J)$	[1]	[1]		
		(ii)	<i>hc</i> / λ 6.63 × 10 ⁻³⁴ × 3.00 × 10 ⁸ /1.124 × 10 ⁻⁷ or 1.77 × 10 ⁻¹⁸ (J) (electron energy =) photon energy – work function or 1.77 × 10 ⁻¹⁸ – 3.68 × 1	[1] [1] 0 ^{–19} [1]			
			1.40×10^{-10} (J)	[1]	[4]		
					[13]		

Page	e 5	Mark Scheme	Syllabus	Pape	aper	
		Cambridge Pre-U – May/June 2015 9792		02		
8 (a)) p	ressure greater outside than inside or water pressing on concrete		[1]	[1]	
(b) (i) $(m =) \pi \times (4.27^2 - 3.65^2) \times 32.5 \times 2420$ 1.21(329238) × 10 ⁶ (kg)		[1] [1]	[2]	
	(ii) $(F_u =) \pi \times 4.27^2 \times 32.5 \times 1020 \times 9.81$ 1. 86(276540) × 10 ⁷ (N)		[1] [1]	[2]	
(c)) (i) any two from weight of (trapped) air is small (compared with the weight of the cor upthrust due to the air outside equal to/(slightly) larger than weight of air	ncrete)			
		density of concrete was determined in air		[2]	[2]	
	(ii) 1.86×10^7 and $1.21 \times 10^6 \times 9.81$ and 1.72×10^4 $1.86 \times 10^7 - 1.21 \times 10^6 \times 9.81 - 1.72 \times 10^4$ ($\approx 6.71 \times 10^6$ (N))		[1] [1]	[2]	
(d) (i) scale stated and \geq 1 cm : 10 ⁶ N correct triangle or correct parallelogram and correct diagonal ($T_P = $)1.25 - 1.33 × 10 ⁶ (N) or 3.85 - 3.90 × 10 ⁶ (N) ($T_P = $)1.28 - 1.30 × 10 ⁶ (N)		[1] [1] [1] [1]	[4]	
	(ii) 1. 2.08 \times 10 ⁸ (N m ⁻²)		[1]	[1]	
		2. $2.08 \times 10^8 \times 250/1.93 \times 10^{11}$ 0.269 (m)		[1] [1]	[2]	
(e) th	ne cable has weight		[1]		

(e) the cable has weight stress at Q is less

[1] [1] [2]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2015	9792	02

(f) any seven from

social:

makes the journey easier/quicker/improves transport opens up new land for suburbs etc makes social contact easier terrorist target opens new areas to industrial expansion obstructs shipping public perception (poor) can be built in deep channels not visible less disruption during construction

safety:

confined space not as exposed as bridge might leak/salt water damage/maintenance difficult/expensive might be hit (submarine, whale) resonance **or** tunnel might flex (in strong current, earthquake) large number of people present in tunnel together

economic:

expensive to build cheaper/shorter/less material/quicker to build/fewer man-hours than bored tunnel encourages industry encourages tourism/tourist attraction itself substantial payback time no income until complete money to build must be borrowed jobs created (during construction)

[7]

[25]