CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Pre-U Certificate

MARK SCHEME for the May/June 2015 series

9792 PHYSICS

9792/03
Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	9792	03

Section A

1 (a) correctly labelled vector triangle
from the vector triangle $\delta \theta=\delta v / v$
from the definition of the radian $\delta \theta=v \delta t / r$ (and reorganise)
(b) (i) one revolution is 2π radians; 27.3 days $=27.3 \times 86400$ (s) $=2358720$ (s) angular velocity $=2 \pi / 27.3$ days $=2 \pi / 2358720=2.66 \times 10^{-6}\left(\mathrm{rads}^{-1}\right)$
(ii) velocity $=2 \pi r / T=2 \pi \times 3.84 \times 10^{8} / 2358720=1023\left(\mathrm{~ms}^{-1}\right)$
acceleration $=v^{2} / r=1023^{2} / 3.84 \times 10^{8}=2.72 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
(c) (i) 1. $\frac{1}{2} \times 7.35 \times 10^{22} \times 1023^{2}$

$$
\begin{equation*}
=3.85 \times 10^{28}(\mathrm{~J}) \tag{1}
\end{equation*}
$$

2. loss of kinetic energy $=3.75 \times 10^{12} \times 86400 \times 365$. $(25) \times 1000000$ $\left(85 \times 10^{28}-1.18 \times 10^{26}\right)=3.828 \times 10^{28}(\mathrm{~J})$
(ii) radius increases
total energy (of system) is conserved
KE/velocity (of Moon) decreases and GPE (of Moon) increases

2 (a) acceleration/restoring force is proportional to displacement/centre of displacement/ oscillation
acceleration/restoring force is in the opposite direction to displacement
保
(b) suitable example e.g. (simple) pendulum, mass-spring oscillator
(c) velocity drawn as a cosine wave
acceleration drawn as a minus sine wave
(d) (i) $\omega=2 \pi f$
$=2 \pi \times 879=5520 \quad 3$ or 4 significant figures only
(ii) use of $E=\frac{1}{2} m A^{2} \omega^{2}=0.5 \times 0.0086 \times 0.0012^{2} \times 5520^{2}$
$=0.189(\mathrm{~J})$
(iii) 6% of energy of one cycle $=0.189 \times 0.060=0.0113(\mathrm{~J})$
power output $=0.0113 \times 879=9.95(\mathrm{~W})$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	$\mathbf{9 7 9 2}$	03

3 (a) $E=V / d$
$=84 / 2.6 \times 10^{-4}=323000\left(\mathrm{NC}^{-1}\right)$
(b) (i) $1 \quad \mathrm{Q}=C V=200 \mu \mathrm{~F} \times 120 \mathrm{~V}=24000(\mu \mathrm{C})$
$2 E=Q V=120 V \times 24000 \mu C=2.88(J)$
$3 \mathrm{~W}=1 / 2 \mathrm{Q} V=1.44(\mathrm{~J})$
(ii) (some) energy is wasted as heat (in charging process)
(iii)

| 1000 | 1000 | 1000 |
| :---: | :---: | :---: | | both $1000(\mu \mathrm{C})$ |
| :--- |

4 (a) (i) diagram
current and magnetic field directions at right-angles to each other
negative charges/electrons (and positive charges) on one side
distribution of charges consistent with Fleming's Left-Hand rule
(ii) magnetic force on moving charges/electrons
electrons move to one side/potential difference/gradient produced/until magnetic force is balanced by electric field
(b) (i) number of electrons per second (passing a point)

$$
\begin{equation*}
=0.0052 / 1.6 \times 10^{-19}=3.25 \times 10^{16} \tag{1}
\end{equation*}
$$

(ii) volume occupied $=3.25 \times 10^{16} / 4.3 \times 10^{21}=7.56 \times 10^{-6}\left(\mathrm{~m}^{3}\right)$
(iii) $7.56 \times 10^{-6}=0.0065 \times 0.0002 \times v$
$v=5.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$

5 (a) (i) N is the number of molecules
m is the mass of one molecule
$\left\langle c^{2}\right\rangle$ is the mean of the squares of all the molecules speeds

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	$\mathbf{9 7 9 2}$	03

(ii) 1. $\mathrm{KE}=3 \times 1.38 \times 10^{-23} \times 373 / 2=7.72 \times 10^{-21}(\mathrm{~J})$
[1] [1]
2. $1 / 2 m v^{2} \propto T$ so at constant temperature $v^{2} \propto 1 / m$
$\frac{v_{H}{ }^{2}}{v_{0}{ }^{2}}=\frac{m_{0}}{m_{H}}$ $v_{H} / v_{o}=\sqrt{\left(5.34 \times 10^{-26} / 3.34 \times 10^{-27}\right)}=3.98$
3. hydrogen molecules have higher speed
greater proportion have a speed greater than escape speed
(b) (i) $(185 / 90)=2.06$
(ii) 1. area is dependent on the number of molecules
(fixed mass of gas) so number of molecules is constant
2. at the lower temperature there will be more molecules travelling slower/ fewer molecules travelling faster

6 (a) (i) probability of decay of a nucleus is always constant or it is not possible to predict when any given nucleus will decay
[1] [1]
(ii) rate of decay $\propto-N O R-\mathrm{d} N / \mathrm{d} t$ is (only) proportional to N
(iii) use of $N=N_{0} \mathrm{e}^{-\lambda T}$ when $N=\frac{1}{2} N_{0}, t=t_{1 / 2}$
$e^{-\lambda t / 2}=\frac{1}{2}$
taking logs gives $-\lambda \mathrm{t}_{\frac{1}{2}}=\ln \frac{1}{2}$ and $-\mathrm{t}_{\frac{1}{2}}=\ln \frac{1}{2} / \lambda(=-0.693 / \lambda)$
(b) (i) ${ }_{0}^{1} \mathrm{n}+{ }_{7}^{14} \mathrm{~N} \rightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{p}$
left-hand side correct
right-hand side correct
(ii) $\lambda=\ln 2 / 5730=1.21 \times 10^{-4}$
$\frac{\mathrm{k}}{1.52 \times 10^{12}}=\frac{\mathrm{k}}{1.3 \times 10^{12}} \times \mathrm{e}^{-1.21 \times 10^{-4} \mathrm{t}}$
$\ln \frac{1.3}{1.52}=-1.21 \times 10^{-4} \mathrm{t}$
$t=1290$ year
(iii) large uncertainty because 1.3×10^{12} is uncertain (7% at best)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	9792	03

7 (a) (i) use of $\Delta E_{\mathrm{n}}=-13.6 \mathrm{eV} / n^{2}$
[1]
use of $E=h f$ [1] $n=3$ [1]
(ii) $E_{5}-E_{2}=-13.6 / 4+13.6 / 25=-2.856 \mathrm{eV}$ [1]
convert -2.856 eV to $4.57 \times 10^{-19} \mathrm{~J}$
$f=4.57 \times 10^{-19} / 6.63 \times 10^{-34}=689\left(\times 10^{12} \mathrm{~Hz}\right)$
[1] [1]
(b) $\Delta f=24 \times 10^{12}(\mathrm{~Hz})$
$v=3 \times 10^{8} \times 24 / 617=11700000\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
[1]
[1]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	9792	03

Section B

8 (a) (i) force per unit mass
[1] [1]
(ii) (weight) W or $F=m g$ or $F=m_{1} g$
$m_{1} g=(-) G m_{1} m_{2} / R^{2}$
$g=G M_{\mathrm{e}} / R^{2}$
(iii) g is inversely proportional to R^{2} or g is proportional to $1 / R^{2} \mathrm{OR} g=k / R^{2}$
(iv) use of one data point from graph
calculation of M_{E}
use of a second data point from graph to calculate M_{E} calculate average from two M_{E} values
(b) (i) volume of sphere $=4 / 3 \pi r^{3}$ and density $=$ mass/volume
$\Delta m=4 / 3 \pi r^{3}(750)^{3}(2500-830)$
$\Delta m=2.95 \times 10^{12}(\mathrm{~kg})$
(ii) $g_{1}=3.89 \times 10^{-4}(\mathrm{~kg})$ and $g_{2}=1.29 \times 10^{-4}(\mathrm{~kg})$ or $\Delta g=G \Delta m / R^{2}$
$R=(750+120)$
$\Delta g=2.6 \times 10^{-4}\left(\mathrm{Nkg}^{-1}\right)$
(c) (i) $g=4 \pi^{2} l T^{2}$
(ii) $T=2 \pi l^{1 / 2} / g^{-1 / 2}$
$\delta T / \delta g=2 \pi l^{1 / 2}\left(-1 / 2 g^{-3 / 2}\right)$ or $=-T / 2 g$
$\delta T / T=-1 / 2 \delta g / g$
(iii) $\delta T=(2.0 \times 0.000098) / 2 \times 9.81=9.989 \times 10^{-6}(\mathrm{~s})$ or $=10.0 \times 10^{-6}(\mathrm{~s})$
[1] [1]

9 (a)(i)(ii) arrow labelled weight or $m g$ acting downwards on both diagrams and equal in length
upward (contact) force in (a) and downward (contact) force in (b)
upward force in (a) > than weight and contact force in (b) << than contact force in (a)
(b) (i) force given by $m v^{2} / r$
$R=0$ or $\mathrm{mg}=m v^{2} / r$
$v=1.21 \mathrm{~m} \mathrm{~s}^{-1}$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	9792	03

(ii) 1. energy cannot be created or destroyed
energy can only be transferred from one form to another
2. use $m g h$ and $\frac{1}{2} m v^{2}$
$m g h=m g 2 r+\frac{1}{2} m v^{2} \mathrm{OR} g h=g 2 r+\frac{1}{2} v^{2}$
$h=0.3+(0.5 \times 1.46) / 9.81=0.3+0.075$
$h=0.375(\mathrm{~m})$
(c) the ball has (additional) rotational KE additional GPE required
[2]
(d) (i) $v=r \omega$

$$
\begin{equation*}
\omega=1.7 / 7.4 \times 10^{-3}=230\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \tag{1}
\end{equation*}
$$

[2]
(ii) rotational $\mathrm{KE}=\frac{1}{2} \omega^{2}=0.5 \times 4.2 \times 10^{-6}\left(0.23 \times 10^{3}\right)^{2}$

$$
\begin{equation*}
=0.111(\mathrm{~J}) \tag{1}
\end{equation*}
$$

[2]
(iii) $I_{1} \omega_{1}=I_{2} \omega_{2}$
$\omega_{2}=\left(4.2 \times 10^{-6} \times 0.23 \times 10^{3}\right) /(4.2+0.2) \times 10^{-6}=220\left(\mathrm{rad} \mathrm{s}^{-1}\right)$

10 (a) region/area in which a charged object experiences a force
(b) (i) force is the same
force is in the opposite direction
magnitude of charge is the same or opposite charges
(ii) acceleration of electron is greater (than that of proton)
mass of electron is much smaller (than that of proton)
acceleration is inversely proportional to mass
(c) $(E=) Q / 4 \pi \varepsilon_{0} r^{2}$
$=1.6 \times 10^{-19} / 4 \pi \varepsilon_{0}(0.05)^{2}$

$$
\begin{equation*}
=5.75 \times 10^{-7} \tag{1}
\end{equation*}
$$

$\left(E_{\text {net }}=5.75 \times 10^{-7} \times 2 \cos 45\right)=8.13 \times 10^{-7}\left(\mathrm{NC}^{-1}\right)$
(d) (i) $\Delta W=F \Delta r$
$W=\int F \mathrm{~d} r=\int Q_{1} Q_{2} / 4 \pi \varepsilon_{0} r^{2} \mathrm{~d} r$
limits between infinity and r
leading to $W=Q_{1} Q_{2} / 4 \pi \varepsilon_{0} r$
(ii) equates $K E=W$
$r=2 \times 79 \times\left(1.6 \times 10^{-19}\right)^{2} / 1.6 \times 10^{-12} \times 4 \pi \times\left(8.85 \times 10^{-12}\right)$
$=2.27 \times 10^{-14}(\mathrm{~m})$

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	$\mathbf{9 7 9 2}$	03

(iii) use $F=Q_{1} Q_{2} / 4 \pi \varepsilon_{0}{ }^{2}$ ($F=$) 70.6 (N)

11 (a) the laws of physics are the same for all uniformly moving/inertial observers the speed of light is a constant
(b) $v^{2} / c^{2}>1$ or $1-v^{2} / c^{2}$ is negative/less than zero or gamma factor is imaginary no solution for gamma factor or square root of a negative number cannot be found
no solution for gamma factor or square root of a negative number cannot be found
(c) (i) any one from
lepton
fundamental particle with no charge
subatomic particle with no charge and very low mass
(ii) neutrinos are weakly interacting
because they have no charge or almost no mass
(d) (i) a practical method of determining distance between CERN and Gran Sasso or position of CERN and Gran Sasso
e.g. GPS, surveying
one method of achieving an accurate measurement e.g. triangulation, precision of instrument
(ii) any three from
measure time (of emission) at CERN and (of arrival) at Gran Sasso
use atomic clocks
need to synchronise clocks
repeat and average to eliminate random errors
(e) (i) $0.2 / 3 \times 10^{8}=0.67 \times 10^{-9}$
$0.67 \times 10^{-9}+8 \times 10^{-9}$
$8.67 \times 10^{-9}(\mathrm{~s})$
(ii) any two from
experiment repeated 15000 times
random errors are small or random errors cancel/average out
systematic errors affect accuracy and not precision or would make all measured times shorter than actual times
(f) any three from
repeat experiment or experiment must be repeatable
repeat experiment with different equipment
check experimental methods/setup
peer review claims
check/modify scientific theory

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	$\mathbf{9 7 9 2}$	$\mathbf{0 3}$

12 (a) labelled diagram of practical setup
valid experiment using a gas
linear relationship (between variables) described or in sketch graph extrapolation to absolute zero described or shown on graph
(b) mean KE/energy is proportional to temperature on the kelvin scale mean $\mathrm{KE}=3 / 2 \mathrm{kT}$ OR mean KE tends to zero at KK
(c) energy is transferred from the sample (to the surroundings) bonds form
particles fall into a potential well/particles are attracted to each other OR increase in attraction/attractive force
(d) (i) particles in a liquid are free to move/particles in a solid are less free to move/ particles in a solid vibrate about a point
larger range of positions/states in a liquid leads to random arrangement/fewer range of positions/states leads to greater certainty of position
(ii) in $\Delta x \Delta p \geqslant h / 2 \pi$, reducing Δx increases Δp
relates KE to $(\Delta p)^{2} / 2 m$
(iii) $\Delta x=0$ or $\Delta p=0$
which means $\Delta x \Delta p=0$, but $\Delta x \Delta p \geqslant h / 2 \pi$
or $\Delta p=0$ which means 100% certainty in momentum/infinite uncertainty
KE not zero
or Δx is associated with Δp (at low temperatures)
KE cannot be zero
(iv) any one from
sufficient energy to break bonds/stop bonds forming
energy larger than latent heat of fusion
(v) any two from
helium atoms must have (extremely) weak forces of attraction zero-point energy is greater than bond energy/minimum of potential well helium must have a low latent heat of fusion
(e) any two from
high pressure increases latent heat of fusion
work must be done (against pressure) to change state
distance between Helium atoms decreases
attractive force between atoms increases

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	$\mathbf{9 7 9 2}$	$\mathbf{0 3}$

13 (a) an applied force/tension
long-chain molecules uncoil
long-chain molecules are more stretched out/linear
cross-links unbroken
(b) (i) all for sections in a line
(ii) one
(iii) three different arrangements of $3 l$
$3 l$ labelled on at least one arrangement
(c) (i) high entropy gives more ways or low entropy gives fewer ways or entropy is a measure of disorder
number of ways linked to disorder
or $S=k \ln W$
where S is entropy and W is the number of ways
(ii) entropy-extension sketch graph entropy value at zero extension (on axis and not tending to infinity)
downward line
(iii) entropy of isolated system cannot decrease or entropy of the Universe is always increasing
(iv) any three from
entropy of rubber band decreases
overall entropy (of Universe) must increase/cannot decrease
work done in stretching rubber band does not change the entropy of the Universe overall entropy (of Universe) increases with heat transfer to surroundings
(d) any four from
heating rubber increases its entropy
long-chain molecules curl up / contract
tension in heated bands increase or there is a difference in tension in the bands or tension in bands changes
the centre of mass/centre of gravity (of the wheel/bands) moves (closer to axle) there is a resultant moment (due to weight/centre of mass/centre of gravity) work done by wheel comes from heat supplied

