MARK SCHEME for the May/June 2015 series

9792 PHYSICS

9792/03

Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	Mark SchemeSyllabCambridge Pre-U – May/June 20159792			
L			Section A	9792	03	,
1	(a)	froi	rectly labelled vector triangle m the vector triangle $\delta\theta = \delta v/v$ m the definition of the radian $\delta\theta = v\delta t/r$ (and reorganise)		[1] [1] [1]	[3]
	(b)	(i)	one revolution is 2π radians; 27.3 days = 27.3×86400 (s) = 2358 angular velocity = $2\pi/27.3$ days = $2\pi/2358720$ = 2.66×10^{-6} (rad		[1] [1]	[2]
		(ii)	velocity = $2\pi r/T = 2\pi \times 3.84 \times 10^8/2358720 = 1023 \text{ (m s}^{-1}\text{)}$ acceleration = $v^2/r = 1023^2/3.84 \times 10^8 = 2.72 \times 10^{-3} \text{ (m s}^{-2}\text{)}$		[1] [1]	[2]
	(c)	(i)	1. $\frac{1}{2} \times 7.35 \times 10^{22} \times 1023^2$ = 3.85 × 10 ²⁸ (J)		[1]	101
			2. loss of kinetic energy = $3.75 \times 10^{12} \times 86400 \times 365.(25) \times 1000$ ($85 \times 10^{28} - 1.18 \times 10^{26}$) = 3.828×10^{28} (J)	000	[1] [1] [1]	[2] [2]
		(ii)	radius <u>increases</u> total energy (of system) is conserved KE/velocity (of Moon) decreases and GPE (of Moon) increases		[1] [1] [1]	[3]
						[14]
2	(a)	oso	celeration/restoring force is proportional to displacement/centre of d cillation celeration/restoring force is in the opposite direction to displacement		:/ [1] [1]	[2]
	(b)	sui	table example e.g. (simple) pendulum, mass-spring oscillator		[1]	[1]
	(c)	aco	ocity drawn as a cosine wave celeration drawn as a minus sine wave plitude of graphs constant		[1] [1] [1]	[3]
	(d)	(i)	$\omega = 2\pi f$ = $2\pi \times 879 = 5520$ 3 or 4 significant figures only rad s ⁻¹		[1] [1] [1]	[3]
		(ii)	use of $E = \frac{1}{2} m A^2 \omega^2 = 0.5 \times 0.0086 \times 0.0012^2 \times 5520^2$ = 0.189 (J)		[1] [1]	[2]
	(iii		6% of energy of one cycle = $0.189 \times 0.060 = 0.0113$ (J) power output = $0.0113 \times 879 = 9.95$ (W)		[1] [1]	[2]
						[13]

Pa	age 3				k Scheme	Syllabus	Рар	
			Camb	oridge Pre	e-U – May/June 2015	9792	03	
3	(a)		0 ⁻⁴ = 3230	00 (N C ⁻¹)			[1] [1]	[2]
	(b) (i)	2 E =		$V \times 24000$	/ = 24 000 (μC) 0 μC = 2.88 (J)		[1] [1] [1]	[1] [1] [1]
	(ii)	(some) e	nergy is w	asted as h	neat (in charging process)		[1]	[1]
	(iii)							
		1000	1000	1000	both 1000 (μC)		[1]	
		4.0	16.0	100	(1000/250) = 4.0 (V) (1000/10) = 100 (V)		[2]	
		2000	8000	50 000	$ \begin{bmatrix} (0.5 \times 1000 \times 16) = 8000 \ (\mu J) \\ (0.5 \times 1000 \times 100) = 50 \ 000 \ (\mu J) \end{bmatrix} $		[2]	[5] [11]
4	(a) (i)	current a negative	charges/	electrons (rections at right-angles to each other (and positive charges) on one side stent with Fleming's Left-Hand rule		[1] [1] [1]	[3]
	(ii)	electrons	s move to	one side/p	arges/electrons potential difference/gradient produced y electric field	d/until	[1] [1]	[2]
	(b) (i)	number o = 0.0052	of electron 2/1.6 × 10	s per secc ^{- 19} = 3.25	ond (passing a point) × 10 ¹⁶		[1]	[1]
	(ii)	volume c	ccupied =	3.25 × 10	$^{16}/4.3 \times 10^{21}$ = 7.56 × 10 ⁻⁶ (m ³)		[1]	[1]
	(iii)	7.56 × 10 v = 5.8 (r	0 ⁻⁶ = 0.006 m s ⁻¹)	65 × 0.000	$02 \times v$		[1] [1]	[2]
								[9]
5	(a) (i)	<i>m</i> is the	number of mass of or ne mean o	ne molecu			[1] [1] [1]	[3]

Pa	age 4	Mark Scheme	Syllabus	Pap	er
		Cambridge Pre-U – May/June 2015	9792	03	
	(ii)	1. KE = $3 \times 1.38 \times 10^{-23} \times 373/2 = 7.72 \times 10^{-21}$ (J) 2. $\frac{1}{2}mv^2 \propto T$ so at constant temperature $v^2 \propto 1/m$		[1] [1]	[1]
		$\frac{v_{H}^{2}}{v_{o}^{2}} = \frac{m_{o}}{m_{H}}$		[1]	
		$v_{H}/v_{o} = \sqrt{(5.34 \times 10^{-26}/3.34 \times 10^{-27})} = 3.98$		[1]	[3]
		3. hydrogen molecules have higher speed greater proportion have a speed greater than escape speed		[1] [1]	[2]
	(b) (i)	(185/90) = 2.06		[1]	[1]
	(ii)	 area is dependent on the number of molecules (fixed mass of gas) so number of molecules is constant at the lower temperature there will be more molecules travelling 	a slower/	[1] [1]	[2]
		at the lower temperature there will be more molecules travelling slower/ fewer molecules travelling faster		[1]	[1]
6	(a) (i)	probability of decay of a nucleus is always constant or it is not poss predict when any given nucleus will decay	sible to	[1]	[1]
	(ii)	rate of decay $\propto -N$ OR $-dN/dt$ is (only) proportional to N		[1]	[1]
	(iii)	use of $N = N_0 e^{-\lambda T}$ when $N = \frac{1}{2} N_0$, $t = t_{\frac{1}{2}}$		[1]	
		$e^{-\lambda t} = \frac{1}{2}$		[1]	
		taking logs gives $-\lambda t_{\frac{1}{2}} = \ln \frac{1}{2}$ and $-t_{\frac{1}{2}} = \ln \frac{1}{2}/\lambda (= -0.693/\lambda)$		[1]	[3]
	(b) (i)	$_{0}^{1}$ n+ $_{7}^{14}$ N \rightarrow $_{6}^{14}$ C+ $_{1}^{1}$ p			
		left-hand side correct right-hand side correct		[1] [1]	[2]
	(ii)	$\lambda = \ln 2/5730 = 1.21 \times 10^{-4}$		[1]	
		$\frac{k}{1.52 \times 10^{12}} = \frac{k}{1.3 \times 10^{12}} \times e^{-1.21 \times 10^{-4}t}$		[1]	
		$\ln \frac{1.3}{1.52} = -1.21 \times 10^{-4} t$		[1]	
		t = 1290 year		[1]	[4]
	(iii)	large uncertainty because 1.3×10^{12} is uncertain (7% at best)		[1]	[1]
					[12]

Ρ	age 5	Mark Scheme	Syllabus	Pape	er
		Cambridge Pre-U – May/June 2015	9792	03	
7	(a) (i)	use of $\Delta E_n = -13.6 \text{ eV}/n^2$ use of $E = hf$ n = 3		[1] [1] [1]	[3]
	(ii)	$E_5 - E_2 = -13.6/4 + 13.6/25 = -2.856 \text{ eV}$ convert -2.856 eV to $4.57 \times 10^{-19} \text{ J}$ $f = 4.57 \times 10^{-19}/6.63 \times 10^{-34} = 689 (\times 10^{12} \text{ Hz})$		[1] [1] [1]	[3]
		= 24×10^{12} (Hz) 3 × 10 ⁸ × 24/617 = 11700000 (m s ⁻¹)		[1] [1]	[2] [8]

Page 6		Mark Scheme	Syllabus	Pap	ər
		Cambridge Pre-U – May/June 2015	9792	03	
		Section B			
8	(a) (i)	force per unit mass		[1]	[1]
	(ii)	(weight) W or $F = mg$ or $F = m_1g$ $m_1g = (-) Gm_1m_2/R^2$ $g = GM_e/R^2$		[1] [1] [1]	[3]
	(iii)	<i>g</i> is inversely proportional to R^2 or <i>g</i> is proportional to $1/R^2$ OR <i>g</i> =	k/R^2	[1]	[1]
	(iv)	use of one data point from graph calculation of $M_{\rm E}$ use of a second data point from graph to calculate $M_{\rm E}$ calculate average from two $M_{\rm E}$ values		[1] [1] [1] [1]	[4]
	(b) (i)	volume of sphere = $4/3 \pi r^3$ and density = mass/volume $\Delta m = 4/3 \pi r^3 (750)^3 (2500 - 830)$ $\Delta m = 2.95 \times 10^{12}$ (kg)		[1] [1] [1]	[3]
	(ii)	$g_1 = 3.89 \times 10^{-4}$ (kg) and $g_2 = 1.29 \times 10^{-4}$ (kg) or $\Delta g = G\Delta m/R^2$ R = (750 + 120) $\Delta g = 2.6 \times 10^{-4}$ (N kg ⁻¹)		[1] [1] [1]	[3]
	(c) (i)	$g = 4\pi^2 l T^2$		[1]	[1]
	(ii)	$T = 2\pi l^{1/2} / g^{-1/2}$ $\delta T / \delta g = 2\pi l^{1/2} (-1/2 g^{-3/2}) \text{ or } = -T/2g$ $\delta T / T = -\frac{1}{2} \delta g / g$		[1] [1] [1]	[3]
	(iii)	$\delta T = (2.0 \times 0.000098)/2 \times 9.81 = 9.989 \times 10^{-6}$ (s) or = 10.0×10^{-6} (s)	(s)	[1]	[1]
					[20]
9	(a)(i)(ii)	arrow labelled weight or <i>mg</i> acting downwards on both diagrams and equal in length upward (contact) force in (a) and downward (contact) force in (b) upward force in (a) > than weight and contact force in (b) << than of force in (a)	contact	[1] [1] [1]	[3]
	(b) (i)	force given by mv^2/r $R = 0$ or mg = mv^2/r v = 1.21 m s ⁻¹		[1] [1] [1]	[3]

Page 7		7		Mark Scheme Cambridge Pre-U – May/June 2015	Syllabus 9792	Pap 03	
		(ii)		energy cannot be created or destroyed energy can only be transferred from one form to another		[1] [1]	[2]
			2. ι	use <i>mgh</i> and $\frac{1}{2}mv^2$		[1]	
			r	$mgh = mg2r + \frac{1}{2}mv^2$ OR $gh = g2r + \frac{1}{2}v^2$		[1]	
				h = 0.3 + (0.5 × 1.46)/9.81 = 0.3 + 0.075 h = 0.375 (m)		[1] [1]	[4]
	(c)			as (additional) rotational KE I GPE required		[1] [1]	[2]
	(d)	(i)	$v = r_0$ $\omega = 1$	∞ 1.7/7.4 × 10 ⁻³ = 230 (rad s ⁻¹)		[1] [1]	[2]
		(ii)	rotati	onal KE = $\frac{1}{2}\omega^2$ = 0.5 × 4.2 × 10 ⁻⁶ (0.23 × 10 ³) ²		[1]	
			= 0.1	11 (J)		[1]	[2]
		(iii)	$I_1\omega_1 = \omega_2 = 0$	= $I_2\omega_2$ (4.2 × 10 ⁻⁶ × 0.23 × 10 ³)/(4.2 + 0.2) × 10 ⁻⁶ = 220 (rad s ⁻¹)		[1] [1]	[2]
							[20]
10	(a)	reg	ion/ar	rea in which a charged object experiences a force		[1]	[1]
	(b)	(i)	force	is the same is in the opposite direction nitude of charge is the same or opposite charges		[1] [1] [1]	[3]
		(ii)	mass	leration of electron is greater (than that of proton) s of electron is much smaller (than that of proton) leration is inversely proportional to mass		[1] [1] [1]	[3]
	(c)	= 1 = 5	.75 × 1	$D^{-19}/4\pi\epsilon_0(0.05)^2$		[1] [1] [1] [1]	[4]
	(d)	(i)	limits	= $F\Delta r$ $\int Fdr = \int Q_1 Q_2 / 4\pi\epsilon_0 r^2 dr$ b between infinity and r ng to $W = Q_1 Q_2 / 4\pi\epsilon_0 r$		[1] [1] [1] [1]	[4]
		(ii)	r = 2	tes KE = W × 79 × (1.6 ×10 ⁻¹⁹) ² /1.6 × 10 ⁻¹² × 4 π × (8.85 × 10 ⁻¹²) 7 × 10 ⁻¹⁴ (m)		[1] [1] [1]	[3]

Pa	ige 8	3	Mark Scheme	Syllabus	Pap	
			Cambridge Pre-U – May/June 2015	9792	03	3
		(iii)	use $F = Q_1 Q_2 / 4\pi\epsilon_0 r^2$ (F =) 70.6 (N)		[1] [1]	[2]
						[20]
11	(a)		laws of physics are the same for all uniformly moving/inertial obser speed of light is a constant	vers	[1] [1]	[2]
	(b)		$c^2 > 1$ or $1 - v^2/c^2$ is negative/less than zero or gamma factor is imasolution for gamma factor or square root of a negative number cann		[1] [1]	[2]
	(c)	(i)	any one from			
			lepton fundamental particle with no charge subatomic particle with no charge and very low mass		[1]	[1]
		(ii)	neutrinos are weakly interacting because they have no charge or almost no mass		[1] [1]	[2]
	(d)	(i)	a practical method of determining distance between CERN and Gra or position of CERN and Gran Sasso e.g. GPS, surveying		[1]	
			one method of achieving an accurate measurement e.g. triangulation of instrument	on, precision	[1]	[2]
		(ii)	any three from measure time (of emission) at CERN and (of arrival) at Gran Sasso use atomic clocks need to synchronise clocks)		
			repeat and average to eliminate random errors		[3]	[3]
	(e)	(i)	$0.2/3 \times 10^8 = 0.67 \times 10^{-9}$ $0.67 \times 10^{-9} + 8 \times 10^{-9}$ 8.67×10^{-9} (s)		[1] [1] [1]	[3]
		(ii)	any two from experiment repeated 15000 times random errors are small or random errors cancel/average out systematic errors affect accuracy and not precision or would make measured times shorter than actual times	all	[2]	[2]
	(f)	rep rep che	eat experiment or experiment must be repeatable eat experiment with different equipment eck experimental methods/setup			
		•	er review claims eck/modify scientific theory		[3]	[3]
						[20]

Page 9		•				
			Cambridge Pre-U – May/June 2015 9792	03	5	
12	(a)	va lin	belled diagram of practical setup lid experiment using a gas ear relationship (between variables) described or in sketch graph trapolation to absolute zero described or shown on graph	[1] [1] [1] [1]	[4]	
	(b)		ean KE/energy is proportional to temperature on the kelvin scale ean KE = 3/2 kT OR mean KE tends to zero at 0K	[1] [1]	[2]	
	(c)	 c) energy is transferred from the sample (to the surroundings) bonds form particles fall into a potential well/particles are attracted to each other OR increase in attraction / attractive force 		[1] [1]		
		att	raction/attractive force	[1]	[3]	
	(d)	(i)	particles in a liquid are free to move/particles in a solid are less free to move/ particles in a solid vibrate about a point larger range of positions/states in a liquid leads to random arrangement/fewer range of positions/states leads to greater certainty of position	[1] [1]	[2]	
		(ii)	in $\Delta x \Delta p \ge h/2\pi$, reducing Δx increases Δp relates KE to $(\Delta p)^2/2m$	[1] [1]	[2]	
		(iii)	$\Delta x = 0 \text{ or } \Delta p = 0$ which means $\Delta x \Delta p = 0$, but $\Delta x \Delta p \ge h/2\pi$ or $\Delta p = 0$ which means 100% certainty in momentum/infinite uncertainty KE not zero or Δx is associated with Δp (at low temperatures) KE cannot be zero	[1] [1] (1) (1) (1) (1)	[2]	
		(iv)	any one from sufficient energy to break bonds/stop bonds forming energy larger than latent heat of fusion	[1]	[1]	
		(v)	any two from helium atoms must have (extremely) weak forces of attraction zero-point energy is greater than bond energy/minimum of potential well helium must have a low latent heat of fusion	[2]	[2]	
	(e)	hig wo dis	y two from yh pressure increases latent heat of fusion ork must be done (against pressure) to change state stance between Helium atoms decreases ractive force between atoms increases	[2]	[2]	
					[20]	

Page 10		Mark Scheme Syllabu	us Pa	per
		Cambridge Pre-U – May/June 2015 9792	0	3
13	lo Io	n applied force/tension ong-chain molecules uncoil ong-chain molecules are more stretched out/linear ross-links unbroken	[1] [1] [1] [1]	[4]
	(b) () all for sections in a line	[1]	[1]
	(i) one	[1]	[1]
	(ii) three different arrangements of 3 <i>l</i> 3 <i>l</i> labelled on at least one arrangement	[1] [1]	[2]
	(c) (high entropy gives more ways or low entropy gives fewer ways or entropy is a measure of <u>disorder</u> number of ways linked to disorder or S = k ln W where S is entropy and W is the number of ways 	[2] (1) (1) (1) (1)	[2]
	(i	 entropy-extension sketch graph entropy value at zero extension (on axis ar not tending to infinity) downward line 	nd [1] [1]	[2]
	(ii) entropy of isolated system cannot decrease or entropy of the Universe is always increasing	[1]	[1]
	(iv) any three from entropy of rubber band decreases overall entropy (of Universe) must increase/cannot decrease work done in stretching rubber band does not change the entropy of the Universe overall entropy (of Universe) increases with heat transfer to surroundings	[3]	[3]
	h Ic te th th	ny four from eating rubber increases its entropy ong-chain molecules curl up/contract ension in heated bands increase or there is a difference in tension in the bands r tension in bands changes he centre of mass/centre of gravity (of the wheel/bands) moves (closer to axle here is a resultant moment (due to weight/centre of mass/centre of gravity) rork done by wheel comes from heat supplied		[4]
				[20]