

Cambridge International Examinations Cambridge Pre-U Certificate

PHYSICS

9792/02 May/June 2016

Paper 2 Written Paper MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2		Mark Scheme	Syllabus	Paper	
		Cambridge Pre-U – May/June 2016	9792	02	
1	(a) (i) uses $m = \rho V$ (weight =) ρhAg		[1] [1]	[2]
	(1	i) uses $p = F/A = \rho hAg/A (= h\rho g)$		[1]	[1]
	(b) (i) $(p = h\rho g = 10.9 \times 1030 \times 9.81 =)1.10 \times 10^{5} (Pa)$		[1]	[1]

(ii) any two rows from:

reason	explanation
density greater at greater depths	pressure greater/water compressed
density greater at greater depths	temperature less/water contracts
density different at greater depths	salt concentration different
g value different further down	distance from centre different/water above
atmosphere exerts force on surface/ exerts pressure	added to water pressure

2 (a) (kinetic energy =) work done on body or Fx[1](acceleration =) F/m[1](use of $v^2 = u^2 + 2ax$ gives) $v^2 = 2(F/m)x$ which rearranges (to $\frac{1}{2}mv^2$)[1][1][3]

(b) (i)	1. $(\frac{1}{2} \times 1040 \times 28^2 =) 4.08 \times 10^5 (J)$	[1]
	2. (F =) P/v	[1]
	(= 36000/28 =) 1290(N)	[1] [3]

(ii)	(P =) mgh/t	[1]	
	(<i>h</i> / <i>t</i> =)28/17 or 1.647 (m s ⁻¹) or 16 800 (W)	[1]	
	$(P = 36000 + 1040 \times 9.81 \times 28/17 = 36000 + 16800 =)52800(W)$	[1]	[3]

(c)	$(F =)\mu_k R$	[1]	
	$0.35 \times 40\ 000 \times 9.81$	[1]	
	1.37×10^{5} (N)	[1]	[3]

[12]

[8]

[4]

[4]

Page 3		Mark Scheme	Syllabus	Paper
		Cambridge Pre-U – May/June 2016	9792	02
3	(a)	p_2 or with p_2 and p_3 beneath p_1 p_1		

correct triangle and labels[1]correct triangle and directions[1][1][2]

(b) (i)
$$(E_3 =) E_1 - E_2$$
 [1] [1]

(ii)
$$v^2 = (1.30 \times 10^7)^2 - (1.20 \times 10^7)^2$$
 [1]
 $(v = \sqrt{(2.5 \times 10^{13})} =) 5.00 \times 10^6 (m s^{-1})$ [1] [2]

(c)	(conservation of kinetic energy ensures) [initial speed of X] ² = v^2 + [final speed of X]] ²	
	(all the masses cancel) [initial speed of X] ² = v^2 + [final speed of X] ² and this is a Pythagorean triangle	[1] [1]	[2]

[7]

[3]

[1]

[1]

[1]

4 (a) (I = P/V = 24.0/12.0 =) 2.00 (A) or $(P =)V^2/R$ [1] (R = V/I = 12.0/2.00 =) 6.00 (Ω) [1] [2]

(b) (i) first column correct second column correct third column correct

<i>R/</i> Ω	total resistance /Ω	current /A	output power /W
0	6.0	2.00	24.0
3.0	9.0	1.33	10.7
6.0	12.0	1.00	6.0
9.0	15.0	0.80	3.8
12.0	18.0	0.67	2.7

(ii) slower increase of *R* (with angle at first makes the control more even) [1] power decreases rapidly at first/unevenly (as resistance increases) or power varies more evenly (with angle) for Fig. 4.2 resistor [1] [2]

[7]

Page 4		4	Mark Scheme Syllabus	Рар	er
			Cambridge Pre-U – May/June 2016 9792	02	2
5	(a)	rai	nbow or dispersion/splits into colours in prisms or chromatic aberration in lens	[1]	[1]
	(b)	(i)	$(c =) \sin^{-1}(1/n)$ or $(n =) 1.59/1.52$ or $(n =) 1.05$ 72.9(°)	[1] [1]	[2]
		(ii)	$(v = c/n = 3.00 \times 10^8/1.59 =) 1.89 \times 10^8 (m s^{-1})$	[1]	[1]
	(c)	(i)	(length of zigzag path =) $50000/\sin 88(^{\circ})$ or $50030.5(m)$ (time on axis =) $50000/1.89 \times 10^{8}$ or $2.6500 \times 10^{-4}(s)$ or $30.5(m)$ length of zigzag path = $50000/\sin 88 = 50030.5m$	[1] [1]	
			(time for zigzag path =) 50 030.5/1.89 × 10° = 2.6516 × 10 ⁻⁺ (s) or $30.5/1.89 \times 10^{8}$ (time delay =) 1.61×10^{-7} (s)	[1] [1]	[4]
		(ii)	absorption by the fibre or attenuation of signal different paths/angles take different times which spreads out the signal	[1] [1]	[2]
	(d)	(i)	path curves towards centre line signal travels faster away from axis	[1]	
			reduced path length longer paths have higher average speed	[1]	[2]
		(ii)	(very) narrow core/fibre	[1]	[1]
					[13]
6	(a)	(i)	(e.g. $2/13 \times 2\pi =$) 0.96 to 1.12 rad(ians) or ^c	[1] [1]	[2]
		(ii)	they are (coherent) and constant phase difference	[1]	[1]
	(b)	(i)	$(\theta =)\sin^{-1}(5.00/14.0)$ or $\sin^{-1}(10.0/14.0)$ or $\sin(\theta) = 5.00/14.0$ or $\sin(\theta) = 10.0/14.0$ 20.9(°) and 45.6(°)	[1] [1]	[2]
		(ii)	central maximum zero intensity at ±20.9(°) and at ±45.6(°) lesser (<50% of central maximum) peaks between ±20.9(°) and ±45.6(°)	[1] [1] [1]	[3]
					[8]

Pa	age 🗄	5	Mark Scheme	Syllabus	Рар	er
			Cambridge Pre-U – May/June 2016	9792	02	2
7	any	eig me bac bot all p (at (at one oth leve	ht points from: an background count = 0.4 (counts s ⁻¹) ckground negligible or attempts to subtract background count rate h axes labelled with quantity, unit and scale points correct to $\pm \frac{1}{2}$ small square and smooth curve that levels off $t = 0$) $A_1 = 40 - 41$ (counts s ⁻¹) $t = 0$) $A_2 = 195 - 196$ (counts s ⁻¹) e half-life very much longer than 18.0 hours or longer than other isotop er half-life 2.2 - 2.4 hours els out because one isotope is used up	De	[8]	[8]
8	(a)	(i)	$(E = hf = hc/\lambda =) 6.63 \times 10^{-34} \times 3.00 \times 10^{8}/3.80 \times 10^{-7}$ 5.23 × 10 ⁻¹⁹ (J)		[1] [1]	[2]
		(ii)	$(\textit{W}_{f} = 5.23 \times 10^{-19} - 2.73 \times 10^{-19} \text{ =}) \ 2.50 \times 10^{-19} \text{ (J)}$		[1]	[1]
		(iii)	$(2.50 \times 10^{-19} / 1.60 \times 10^{-19} =)1.57 (eV)$		[1]	[1]
		(iv)	$(f_{\rm th} = W_{\rm f}/{\rm h} =) 2.50 \times 10^{-19}/6.63 \times 10^{-34}$ $3.78 \times 10^{14} ({\rm Hz})$		[1] [1]	[2]
	(b)	less pho elec	s intensity because fewer photons otons have the same energy or photon energy independent of intensi ctromagnetic radiation is quantised or comes in photons or explained	ty (of light) I by	[1] [1]	
		qua	antum model		[1]	[3]
	(c)	(i)	some photoelectrons do more work than the work function as they e photoelectrons do different amounts of work or collide	escape or	[1]	[1]
		(ii)	no wavelengths less than 380 nm or no ultraviolet light smaller wavelengths have greater photon energy		[1] [1]	[2]
						[12]
9	(a)	(i)	from GPE and to electrical (ignore intermediate kinetic) or rotationa (of Earth) and to electrical (ignore intermediate kinetic)	al KE	[1]	[1]
		(ii)	any two of: friction between water and pipe, viscosity within water, friction between moving parts, resistive heating in coils, cables eddy currents in transformer/generator		[2]	[2]
	(b)	(i)	<i>GPE</i> =) ρ <i>Vgh</i> or $1.03 \times 10^3 \times 2100 \times 9.81 \times 12.4$ 2.63×10^8 (J s ⁻¹)		[1] [1]	[2]
		(ii)	$(P = 0.905 \times 2.63 \times 10^8 / 10^6 =) 238 (\text{MW})$		[1]	[1]
		(iii)	$(I = P/V = 2.38 \times 10^8/225000 =) 1.06 \times 10^3$ (A)		[1]	[1]

Page 6	6	Mark Scheme	Syllabus	Рар	er
		Cambridge Pre-U – May/June 2016	9792	02	?
(c)	(i)	24 × 10 × 10 ⁶ × 365 × 24 or 2.1 × 10 ⁶ (MWh) or 2.1 × 10 ⁹ (kWh) or 2.1 540 000 000/2.1 × 10 ⁹ 0.257 or 25.7 %	×10 ¹² (Wh)	[1] [1] [1]	[3]
	(ii)	(there are times when) generation is less than the maximum level o is no generation at all when levels are not sufficiently different or levels are equal or no de electricity	r when thei emand for	re [1] [1]	[2]
(d)	rota (mo slo	ational energy of Earth or kinetic energy of Earth-Moon system ore) friction/force between Earth and moving water due to turbines ws rotation of Earth or increases Earth-Moon distance		[1] [1] [1]	[3]
(e)	(i)	$(F_{\rm M} =)GMm/(r-R)^2 - GMm/r^2$ bring over a common denominator of $r^2(r-R)^2$ $r >> R$ and simplification leading to $2GMmR/r^3$		[1] [1] [1]	[3]
	(ii)	1. $(F_{\rm M} = 2GMmR/r^3 =)$ 2 × 6.67 × 10 ⁻¹¹ × 7.35 × 10 ²² × 1.00 × 6.38 × 10 ⁶ /(3.84 × 10 ⁸) 1.10 × 10 ⁻⁶ (N)) ³	[1] [1]	[2]
		2. (ratio = $M_M r_E^3 / (M_S r_M^3) = $) 7.35 ×10 ²² × (1.50 × 10 ¹¹) ³ /(1.99 × 10 ³⁰ × (3.84 × 10 ⁸) ³) 2.20 the effect of the Moon on the tides is 2.20 times than the Sun		[1] [1] [1]	[3]
	(iii)	Earth, Moon Sun in straight line tidal forces/bulges coincide/reinforce		[1] [1]	[2]
					[25]