

Cambridge International Examinations Cambridge Pre-U Certificate

PHYSICS

9792/03 May/June 2016

Paper 3 Written Paper MARK SCHEME Maximum Mark: 140

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		Cambrid	Mark Scheme dge Pre-U – Mav/Ju	ne 2016	Syllabus 9792	Pap 03	er 3
L		Cumbri	SECTION A		0.02		-
1	(a) (i)	circumference = 4000	00000 m so radius =	$4 \times 10^7 / 2\pi = 6.366$	× 10 ⁶ (m)	[1]	[1]
	(ii)	difference = (6.366 – % error = 900/6357 =	6.357) × 10 ⁶ (0.009 > 0.14(%)	< 10 ⁶)		[1] [1]	[2]
	(b) (i)	1 day = $24 \times 60 \times 60$ s	s = 86400(s)			[1]	[1]
	(ii)	because the Earth ro (if it is not over the eq	tates from west to ea uator) it would move	ast N to S to N		[1] [1]	[2]
	(c) (i)	$E_p = -6.67 \times 10^{-11} \times 50^{-11}$	$0.98 \times 10^{24} \times 95/4.23$	$\times 10^7 = -9.0 \times 10^8$	J	[1]	[1]
	(ii)	1. speed = $2\pi \times 4.2$ k.e. = $\frac{1}{2} \times 95 \times 3$ 2. numerical value of	$3 \times 10^{7}/86400 = 307$ $0.76^{2} = (4.5 \times 10^{8}) (J)$ of p.e. is twice that of	6 m s ^{−1} k.e. and has a neg	gative sign	[1] [1] [1]	[3]
	(iii)	second row correct top row correct third row as a tenth of fourth row all zero	f top row			[1] [1] [1] [1]	[4]
		radius of orbit	gravitational p.e. $/J \times 10^8$	kinetic energy $/J \times 10^8$	total energy /J × 10 ⁸		
		geostationary	-9.0	+ 4.5	-4.5		
		2 <i>R</i>	-4.5	+2.25	-2.25		
		10 <i>R</i>	-0.90	0.45	-0.45		
		infinity	0	0	0		
	(iv)	it would be travelling	slowly or			[1]	
		it would take too long to	extra p.e. to get furth	tops before it gets er from the Sun or	inere	[1]	[2]
		al iviars its k.e. is zero)				[16]

 2 (a) (i) clear resonance peak on graph marked A and peak at fo
 [1]

 start at driver amplitude and peak at fo
 [1]

 (ii) always beneath the first graph peak lower and to the left of resonant frequency
 [1]

 [1]
 [2]

Ра	ge 3	3 Mark Scheme Syllabus		Mark Scheme Syllabus P		eme Syllabus Paper		er
			Cambridge Pre-U – May/June 2016	9792	03	}		
	(b)	wh and	en the oscillation is very fast there is little time for large movement d the energy supplied from the driver (per unit time) will be small		[1] [1]	[2]		
	(c)	(i)	$ \begin{array}{l} L = 8.6 \times 10^{-6} \\ \text{C} = 1/4 \pi^2 \text{f}^2 \text{L} = 1/4 \pi^2 \times (5.2 \times 10^6)^2 \times 8.6 \times 10^{-6} = \\ 1.09 \times 10^{-10} \text{ (F)} \end{array} $		[1] [1] [1]	[3]		
		(ii)	$\lambda = c/f = 3.00 \times 10^8/f = 3.00 \times 10^8/5.2 \times 10^6 = 57.7$ (m)		[1]	[1]		
						[10]		
3	(a)	(i)	a region within which a charge experiences a force		[1]	[1]		
		(ii)	force on charge q in field F = Eq work done in moving charge a distance d = Eqd p.d. = work done per unit charge = Eqd/q = Ed. So E = p.d.		[1] [1]	[2]		
	(b)	(i)	2 vertical and 1 horizontal to the left at least two other lines meeting the cylinder at right angles (must rea surface) at least three lines spreading out through the open end and divergin symmetrical top and bottom	ach the Ig	[1] [1] [1] [1]	[4]		
		(ii)	lines egg-shaped and at right angles to field lines $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$ positions (approximately) correct and labelled		[1] [1]	[2]		
	(c)	(i)	E = Q/4 $\pi\epsilon_0$ r ² = 7.2 × 10 ⁻⁸ /4 π × 8.385 × 10 ⁻¹² × 2.8 ² = 82.6 (N C ⁻¹) or 28 (N C ⁻¹)		[1] [1]	[2]		
		(ii)	because of the earthed shield the field outside is less than the field would be without the earth connection	would	[1]	[1]		
						[12]		
4	(a)	dia me app the any	gram/arrangement with suitable length of cord firmly fixed at one ence asurement of initial length and use of suitable apparatus for diameter plication of load and measurement of extension ory given y valid additional detail	1	[1] [1] [1] [1] [1]	[5]		

Pa	ge 4	4	Mark Scheme	Syllabus	Pap	er
			Cambridge Pre-U – May/June 2016	9792	03	,
	(b)	di wa wa m	iagram or replaced with corresponding words vay of increasing load to cause large extension vay of determining the maximum extension before it breaks nethod for calculating the maximum energy stored		[1] [1] [1] [1]	[4]
						[9]
5	(a)	(i)	i) (900 – 300)/900 = 0.667 / 66.7(%)		[1]	[1]
		(ii)	i) takes low temperature in the region of 300K	20%	[1]	
			petrol engines (maximum) efficiency around 950/1250 = 76%	0 78	[1]	[2]
		(iii)	i) T_1 temperature must not melt the metal T_2 minimum temperature: e.g. temperature of surroundings		[1] [1]	[2]
	(b)	(i)	 i) 1. the gas is back to its original state or internal energy at start t 	he same as	at [1]	
			so the temperature is the same at the start and finish		[1]	
			2. the gas is at the same temperature throughout the change		[1]	
			3. the gas is expanding and work is being done by the gas		[1]	[4]
		(ii)	i) first row correct		[1]	
			second row correct		[1]	
			fourth row correct		[1]	[4]
			stage heat energy supplied work done on gas/J increa	se in interna	I	

stage	heat energy supplied to gas/J	work done on gas/J	increase in internal energy of gas/J
1	-702	+702	0
2	0	+844	+844
3	+936	-936	0
4	0	-844	-844

(iii) efficiency = net work done/energy input = (936 - 702)/936 = 234/936 = 0.25 / 25 (%)

[15]

[1] [1] [2]

age	5	Mark Scheme Syllat	ous	Pap	er
		Cambridge Pre-U – May/June 2016 9792		03	
(a)	risi	ng from zero at 0 to a peak then falling away		[1]	[1]
(b)	(i)	λ_{max} T = 520 \times 5800 = 210 \times T so T = 14400 (K)		[1]	[1]
	(ii)	luminosity = area \times s \times T ⁴ = 6.3 \times 10 ¹⁷ \times 5.67 \times 10 ⁻⁸ \times 14400 ⁴ = 1.5 \times 10 ²⁷ (W) with estimate only to 1, 2 or 3 significant figures		[1] [1]	[2]
	(iii)	$1.5359 \times 10^{27} / 4\pi R^2 = 1.6 \times 10^{-9} W m^{-2}$ R = $\sqrt{(1.5359 \times 10^{27} / 4\pi \times 1.6 \times 10^{-9})} = 2.75 \times 10^{17} (m)$		[1] [1]	[2]
					[6]
(a)	(i)	$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}\alpha$		[1]	[1]
	(ii)	correct beta particle equation correct		[1] [1]	[2]
		$^{234}_{90}$ Th $\rightarrow ^{234}_{91}$ Pa + $^{0}_{-1}\beta$			
(b)	4 a so	Ipha decays reduce nucleon number to 222 two beta decays are required to get to proton number 86		[1] [1]	[2]
(c)	(i)	$\begin{array}{l} 5.48\text{MeV}=5.48\times10^6\times1.60\times10^{-19}~\text{or}~8.77\times10^{-13}\text{(J)}\\ (\text{m}=\text{E/c}^2=)~8.77\times10^{-13}/(3.00\times10^8)^2~~\text{or}~~9.74\times10^{-30}\text{(kg)}\\ (1\text{u}=1.66\times10^{-27}),~(\text{m}=)~9.74\times10^{-30}\text{kg}/1.66\times10^{-27})=5.87\times10^{-3}\text{(u)} \end{array}$		[1] [1] [1]	[3]
	(ii)	$(\lambda = \ln 2/t\frac{1}{2} =) \ln 2/3.83 = 0.181$ (A/A ₀ = e ^{-λt} =) e ^{-(0.181 × 20)} = 0.0268		[1] [1]	[2]
(d)	use or use	e of some barrier to stop radon entry existing house or during construction using polythene film at top of foundations or under ground floor carpets e an air pump in space (under floor) to drive out contaminated air		[1] [1]	[2] [12]
	age (a) (b) (c) (d)	age 5 (a) risi (b) (i) (ii) (iii) (a) (i) (iii) (a) (i) (i) (b) 4 a so (c) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	age 5Mark SchemeSyllatCambridge Pre-U – May/June 2016979(a) rising from zero at 0 to a peak then falling away(b) (i) $\lambda_{max} T = 520 \times 5800 = 210 \times T$ so T = 14400(K)(ii) luminosity = area × s × T ⁴ = 6.3 × 10 ¹⁷ × 5.67 × 10 ⁻⁸ × 14400 ⁴ = 1.5 × 10 ²⁷ (W) with estimate only to 1, 2 or 3 significant figures(iii) 1.5359 × 10 ²⁷ /4πR ² = 1.6 × 10 ⁻⁹ Wm ⁻² R = $\sqrt{(1.5359 \times 10^{27}/4π \times 1.6 \times 10^{-9})} = 2.75 \times 10^{17} (m)$ (a) (i) $\frac{238}{92}$ U $\rightarrow \frac{234}{90}$ Th + $\frac{4}{2}$ (ii) correct beta particle equation correct $\frac{234}{90}$ Th $\rightarrow \frac{234}{91}$ Pa + $\frac{0}{.0}$ g(b) 4 alpha decays reduce nucleon number to 222 so two beta decays are required to get to proton number 86(c) (i) 5.48 MeV = 5.48 × 10 ⁶ × 1.60 × 10 ⁻¹⁹ or 8.77 × 10 ⁻¹³ (J) (m = E/c ² =) 8.77 × 10 ⁻¹³ ((3.00 × 10 ³) ² or 9.74 × 10 ⁻³⁰ (kg) (1 u = 1.66 × 10 ⁻²⁷), (m =) 9.74 × 10 ⁻³⁰ kg/1.66 × 10 ⁻²⁷) = 5.87 × 10 ⁻³ (u)(ii) ($\lambda = \ln 2/t \frac{1}{2} =) \ln^{2/3} .83 = 0.181$ (A/A ₀ = e ^{-3.1} =) e ^{-(0.181 × 20)} = 0.0268(d) use of some barrier to stop radon entry existing house or during construction or using polythene film at top of foundations or under ground floor carpets use an air pump in space (under floor) to drive out contaminated air	age 5Mark SchemeSyllabus 9792(a) rising from zero at 0 to a peak then falling away(b) (i) $\lambda_{max} T = 520 \times 5800 = 210 \times T$ so $T = 14400 (K)$ (ii) luminosity = area × s × T ⁴ = 6.3 × 10 ¹⁷ × 5.67 × 10 ⁻⁸ × 14400 ⁴ = 1.5 × 10 ²⁷ (W) with estimate only to 1, 2 or 3 significant figures(iii) 1.5359 × 10 ²⁷ /4 π R ² = 1.6 × 10 ⁻⁹ Wm ⁻² R = $\sqrt{(1.5359 \times 10^{27}/4\pi \times 1.6 \times 10^{-9}) = 2.75 \times 10^{17} (m)$ (a) (i) $\frac{238}{92} U \rightarrow \frac{234}{90} Th + \frac{4}{2} \alpha$ (ii) correct beta particle equation correct $2^{34}_{.90} Th \rightarrow \frac{234}{91} Pa + \frac{0}{.16} \beta$ (b) 4 alpha decays reduce nucleon number to 222 so two beta decays are required to get to proton number 86(c) (i) 5.48 MeV = 5.48 × 10^6 × 1.60 × 10 ⁻¹⁹ or $8.77 \times 10^{-13} (J)$ (m = $E/c^2 = 18.77 \times 10^{-13}/(3.00 \times 10^6)^2$ or $9.74 \times 10^{-30} (kg)$ (1 u = 1.66 × 10 ⁻²⁷), (m =) $9.74 \times 10^{-30} kg/1.66 \times 10^{-27}) = 5.87 \times 10^{-3} (u)$ (ii) $(\lambda = \ln 2/t/_2 =) \ln 2/3.83 = 0.181$ (A/A ₀ = $e^{-3.4} =) e^{-(0.161 \times 20)} = 0.0268$ (d) use of some barrier to stop radon entry existing house or during construction or using polythene film at top of foundations or under ground floor carpets use an air pump in space (under floor) to drive out contaminated air	age 5Mark SchemeSyllabusPapCambridge Pre-U - May/June 2016979203(a) rising from zero at 0 to a peak then falling away[1](b) (i) λ_{max} T = 520 × 5800 = 210 × T so T = 14400(K)[1](ii) luminosity = area × s × T ⁴ = 6.3 × 10 ¹⁷ × 5.67 × 10 ⁻³ × 14400 ⁴ [1]= 1.5 × 10 ²⁷ (W) with estimate only to 1, 2 or 3 significant figures[1](iii) 1.5359 × 10 ²⁷ /4πR ² = 1.6 × 10 ⁻⁹ Wm ⁻² [1]R = $\sqrt{(1.5359 × 10^{27}/4πR^2 = 1.6 × 10^{-9} Wm^{-2}}$ [1](i) 2^{38}_{92} U $\rightarrow \frac{234}{90}$ Th + $\frac{4}{2}\alpha$ [1](ii) correct beta particle equation correct[1] 2^{24}_{90} Th $\rightarrow \frac{234}{94}$ Pa + $\frac{1}{-1}\beta$ [1](b) 4 alpha decays reduce nucleon number to 222 so two beta decays are required to get to proton number 86[1](c) (i) 5.48 MeV = 5.48 × 10 ⁶ × 1.60 × 10 ⁻¹⁹ or 8.77 × 10 ⁻¹³ (J) (m = E/c^2 =) 8.77 × 10 ⁻¹³ ((3.00 × 10 ³) ² or 9.74 × 10 ⁻³⁰ (kg) (1] (1 = 1.66 × 10 ⁻²⁷), (m =) 9.74 × 10 ⁻³⁰ (kg) (1][1](ii) $(\lambda = \ln 2/t)^{2}_{2} = \ln 2/3.83 = 0.181$ ($A/A_0 = e^{-4t} =) e^{-(0.181 \times 20)} = 0.0268$ [1](d) use of some barrier to stop radon entry existing house or during construction or using polythene film at top of foundations or under ground floor carpets use an air pump in space (under floor) to drive out contaminated air[1]

Page 6		Mark Scheme S		Syllabus	Paper	
			Cambridge Pre-U – May/June 2016	9792	03	;
			SECTION B			
8	(a)	2.8 n c	joules of work done per coulomb of charge onversion into electrical energy from chemical energy		[1] [1]	[2]
	(b)	(i)	$E = I(R_F + R + r)$		[1]	[1]
	(ii)	$(I = 1.63/180 = 9.06 \text{ mA}; R_F = 0.45/0.00906 =) 49.7 (\Omega)$ (p.d. across r) = 2.80 - 1.63 - 0.45 V OR 0.72 V (r = 0.72/0.00906) = 79.5(\Omega)		[1] [1] [1]	[3]
	(i	ii)	gradient = <i>E</i> intercept = –(Rf + r)		[1] [1]	[2]
	(c)	(i)	Q = CV = It I = $4.2 \times 10^{-6} \times 2.8/0.001 = 0.0118$ (A)		[1] [1]	[2]
	(ii)	5900/($60 \times 18.2 \times 10^{-6} \times (365 \times 24 \times 60)$) = 10.3 (year)		[1]	[1]
	(d)	(i)	differentiation done correctly or integration of expression		[1]	[1]
	(ii)	substituting V ₀ /2 to get ln 2 = t/CR t_{y_2} = 0.693 CR/ln 2CR		[1] [1]	[2]
	(i	ii)	1. obtain $t_{\frac{1}{2}} 0.46 \text{ ms}$ R (= 0.46 × 10 ⁻³ /0.693 × 4.4 × 10 ⁻⁶) = 150.8 (Ω) 2. energy = 18.2 × 10 ⁻⁶ = $\frac{1}{2} \times 4.4 \times 10^{-6} \times V^2$ V ₀ = 2.8 V, and at end V = 0.28 V V/V0 = 0.1 = exp -(t/CR) or ln 0.1 = -t/CR = -2.30 (h = 2.20 + 4.4 + 40^{-6} + 450.8 =) 4.52 + 40^{-3}(a)		[1] [1] [1] [1] [1]	[0]
			$(l = 2.30 \times 4.4 \times 10^{-1} \times 150.8 =) 1.53 \times 10^{-1} (s)$		נין	[o]
						[20]
9	(a)	(i)	v = $2\pi r/T$, (= $2\pi \times 6.2/4.1$) = 9.5 (m s ⁻¹)(9.50)		[1] [1]	[2]
	(ii)	acceleration = v^2/r (= 9.50 ² /6.2) = 14.6 (m s ⁻²)		[1] [1]	[2]
	(b)	(i)	<i>mg</i> unaltered (beyond arms but not beyond bottom of cage) $mv^2/r > 1$ contact force downward smaller than weight	mg	[1] [1]	[2]
	(ii)	R + mg = ma R = m(a - g) = 75(14.6 - 9.81) = 360 (N)		[1] [1]	[2]

Pa	age	7	Mark Scheme	Syllabus	Рар	er
			Cambridge Pre-U – May/June 2016	-U – May/June 2016 9792		;
	(c)	(i)	his weight can give him an acceleration up to g so acceleration must be larger than g for a contact force to be requ	uired	[1] [1]	[2]
		(ii)	minimum speed when $v^2/r = g$ $v^2/6.2 = 9.81$ $v = 7.8 (m s^{-1})$		[1] [1] [1]	[3]
	(d)	rec tor inc wit	call $I = \Sigma mr^2$ que = $I\alpha$ reased mass makes <i>I</i> larger h larger inertia and same torque angular acceleration decreases		[1] [1] [1] [1]	[4]
	(e)	h = coi h =	$= 4\pi^2 I/mg T^2$ rect substitution = 4.48 (m)		[1] [1] [1]	[3]
						[20]
10	(a)	(i)	planets move in elliptical orbits with the Sun at one focus line joining a planet to the Sun sweeps out equal areas in equal tir	nes	[1] [1]	[2]
		(ii)	1. $F = m \times r\omega^2 = mr(2\pi/T)^2$ and $F = GMm/r^2$ rearrange to get $T^2 \propto r^3$		[1] [1]	
			2. attempts to take logs of expression in (a)(II)1. to get In T= $\frac{1}{2} \ln (4\pi^2/GM) + 1\frac{1}{2} \ln r$ intercept $\frac{1}{2} \ln (4\pi^2/GM)$ gradient is 3/2		[1] [1] [1]	[5]
	(b)	(i)	all points $\pm \frac{1}{2}$ small square best fit straight line to be accurate		[1] [1]	[2]
		(ii)	 coordinates quoted from graph (not table of values) evidence of calculation from values. range 1.48 – 1.53 		[1] [1]	
			2. (it is a straight line) of gradient 3/2		[1]	[3]
		(iii)	ln 153 = 5.03 ln r = 12.77 r = 350 000 (km)		[1]	[1]
		(iv)	Use of equation from (a)(ii) with km changed to m and hr to s $M = \frac{4\pi^2 r^3}{GT^2} = \frac{4\pi^2 (5.82 \times 10^8)^3}{6.67 \times 10^{-11} \times (323 \times 60 \times 60)^2} = 8.63 \times 10^{25} \text{kg}$		[1]	
			reorganised to get mass and correct substitution $M = 8.63 \times 10^{25}$ kg		[1] [1]	[3]

Page 8		Mark Scheme Syllabus		Рар	er
		Cambridge Pre-U – May/June 2016	9792	03	;
(c)	any two similarities from: both have radial and uniform field patterns both are conservative both have a potential forces between point masses/charges obey an inverse square law any two differences from:		[2]	[4]
		gravitational fields act on mass but electric fields act on charge electric fields can be screened but gravitational fields cannot be scr force of attraction only for gravitational field but attraction and repul electric fields	reened sion in		
					[20]
11 (a) (((((((diagram should be labelled and show any four points from: electron source with filter of some kind to reduce the intensity of the ele- compulsory) experiment carried out in a vacuum double slit drawn or labelled nethod of detection – e.g. ccd screen n an appropriate configuration	ctron beam	[4]	[4]
(b) a 4 6 7 7 7 7 7	any one point from: <i>particle:</i> electrons arrive discretely; each electron registers as a single point on t electrons are not 'smeared out' on the screen any one point from: <i>vave:</i> pattern of regular maxima and minima characteristic of an interference p dentical pattern to Young's double slit experiment	he screen pattern	[1]	[2]
(c) (any one point from: velocities must be the same (or in a very small range) velocity such that wavelength comparable to slit separation any two points from: 		[1]	
		significance of regular spacing in pattern velocity affects wavelength of electrons (de Broglie relation) different velocities would affect fringe spacing velocities too high or too low would not give pattern		[2]	[3]

Pa	age S)	Mark Scheme Sy	llabus	Рар	er
			Cambridge Pre-U – May/June 2016	9792	03	
		(ii)	any four points from: idea of electron waves / wave function fringe spacing depends on wavelength or velocity/momentum of electro electron waves each slit interfere to form 2 slit interference pattern wave intensity is proportional to probability of electron arrival maxima have high arrival probability – and / or reverse wave function collapses at screen so individual electrons are detected pattern builds gradually	ons as	[4]	[4]
	(d)		any three points from: each electron explores all paths from source to screen (quantum theory is indeterministic) so the same initial conditions do no necessarily lead to the same outcomes idea that phasors from different paths add up at screen each possible path contributes to the probability of the electron arriving particular point phasor as rotating vector probability of arrival linked to amplitude squared each electron has a probability of arriving anywhere on the screen (whe probability is > 0) the chance of successive electrons ending up at same point is near zer	ot g at a lere ero	[3]	[3]
	(e)		predict outcome /future given initial values / determined by past and present			[2]
	(f)		any two points from: if two electrons enter the apparatus under the same initial conditions are likely to end up at different places on the screen knowing the initial conditions of an electron does not enable predictions outcome	s of its	[2]	[2] [20]
12	(a)	(i)	any two points from: particles are very close together / gas occupies a very small volume so particle volumes cannot be neglected inter-particle forces cannot be neglected		[2]	[2]
		(ii)	any two points from: particles have (very) large kinetic energy collisions might not be elastic ionisation might occur (change of state to plasma) there might be relatavistic effects time for collision approximately the time between collisions		[2]	[2]

Page 1	0	Mark Scheme S	Syllabus	Рар	er
		Cambridge Pre-U – May/June 2016	9792	03	
	(iii)	any two points from: particles have (very) low kinetic energy gas might change state to a liquid inter-particle forces cannot be neglected p.e. due to inter-particle forces might be comparable with or exceed k.e. quantum effects might be significant volume becomes very small but cannot be zero		[2]	[2]
(b)	(i)	any two points from: if speed of light is measured (relative to absolute space) it would be differently moving observers however, speed of light is an invariant /has the same value for all ob or it would not have the same velocity relative to all inertial observers explanation of expected shift in relative motion ($c \pm v$) for expt.	different fc servers)r [2]	[2]
	(ii)	any two points from: calculation to show that gamma is about 1 for everyday velocities velocities in everyday life are < <c relativistic time differences are negligible in everyday life</c 		[2]	[2]
(c)	(i)	any two points from: dependence of threshold on frequency and not on amplitude/intensi dependence of max. k.e. on frequency not amplitude/intensity instantaneous emission of electrons/no time delay randomness of emission	ty	[2]	[2]
	(ii)	any two points from: intensity at minimum intensity at maximum 4× intensity from one slit, not double pattern of maxima and minima destructive/constructive interference		[2]	[2]
(d)	(i)	both correct = 3 marks one correct = 2 marks correct method but wrong answer = 1 mark 1. de Broglie wavelength of Moon is about $h/mv = 9.5 \times 10^{-60}$ m 2. de Broglie wavelength of orbiting electron is about $h/mv = 3.7 \times 10^{-60}$ m	10 ⁻¹¹ m	[3]	[3]
	(ii)	any three points from: 9.5×10^{-60} m << radius of orbit insignificant 3.7×10^{-11} m comparable with radius of orbit and therefore significant <i>must make comparison and draw conclusion for full marks</i>		[3]	[3]
					[20]

Page 11		1	Mark Scheme Syllabus	Paper	
			Cambridge Pre-U – May/June 2016 9792	03	
13	(a)	any no if th ent if th ent	 <i>three</i> points from: heat can flow into or out of the system heat can flow into or out of the system he system was open then heat flow out of the system could reduce the system's ropy and violate the 2nd law matter flow in / no matter flow out of system he number of particles decreases then so does the number of ways ropy decrease (is a violation of the second law) 	[3]	[3]
	(b)	any no exte the idea	/ two points from: external resultant forces/only forces are internal to the system ernal resultant force would change the momentum of the system (and so violate law of conservation of momentum a of F = $d(mv)/dt$ where F is the external resultant force	[2]	[2]
	(c)	(i)	any two points from: living things increase order and complexity as they grow (e.g. seed to tree) the entropy of a living thing (viewed in isolation) can decrease the number of ways for a fully grown organism is greater than for the materials from which it grew	[2]	[2]
		(ii)	any three points from: living things are not closed systems they exchange energy or matter with their surroundings, (either to or from) every process inside a living thing obeys the 2nd law living things increase the entropy of their surroundings (net) increase of the entropy of the universe or their surroundings metabolic processes generate and dissipate heat	[3]	[3]
	(d)	(i)	any three points from: entropy is related to the number of ways in which energy / particles can be distributed among the various states within a system removing heat reduces the amount of energy to be distributed and so reduces the number of distinct microscopic configurations (ways in which energy and particles can be arranged) of the system	[3]	[3]
		(ii)	any three points from: the refrigerator must compensate for this reduction in entropy by increasing the entropy of its surroundings the increase in the entropy of the surroundings must be greater than the decrease in entropy of the object (electrical) energy must be supplied to the refrigerator or the refrigerator must generate heat which is dumped in the surroundings heat which is dumped in the surroundings	[3]	[3]

Page 12	2 Mark Scheme	Syllabus	Pap	er
	Cambridge Pre-U – May/June 2016	9792	03	1
(e)	any two points from: past – must have been a low probability configuration past – a state achievable in a relatively small number of ways future – must be a higher entropy than the past there will be less energy available to do useful work in the future than th future will evolve towards an equilibrium state the universe is heading towards a 'heat' death there is an arrow of time that distinguishes the past from the future extreme end point – no more energy available to do useful work	ne past	[2]	[2]
(f)	any two points from, but at least one must relate to the second law: energy dense fuels are running out – not energy energy becomes disordered in the atmosphere when fuels are burnt entropy increases/ number of ways of distributing increases concentrating dispersed energy would decrease entropy (violate the se	energy cond law)	[2]	[2]
				[20]