

Cambridge International Examinations Cambridge Pre-U Certificate

PHYSICS

9792/02 May/June 2017

Paper 2 Written Paper MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

This document consists of 8 printed pages.

Cambridge Pre-U – Mark Scheme PUBLISHED Section A

May/June 2	2017
------------	------

Question	Answer	Marks
1(a)	(gravitational) force <u>per</u> unit mass or force / mass	1
1(b)(i)	at least 5 vertical lines equally spaced (by eye)	1
	arrowheads downwards	1
1(b)(ii)	one dashed, horizontal line	1
1(c)(i)	$(\Delta V = g \Delta h = 9.81 \times 15.5 =)152 (J kg^{-1})$	1
1(c)(ii)	$(v =) \sqrt{2g} \Delta h \text{ or } \sqrt{2as \text{ or } \sqrt{(2 \times 152(.055))}}$	1
	17.4 (m s ⁻¹)	1

Question	Answer	Marks
2(a)(i)	when force is removed and the material returns to its original size and shape	1
2(a)(ii)	1 sensible suggestion e.g. ceramic, glass, concrete	1
	2 sensible suggestion e.g. any metal, copper	1
	3 sensible suggestion e.g. clay, plasticine, putty, plastic	1
2(b)(i)	$(x =)Fl/EA \text{ or } 12.8 \times 9.81 \times 7.65 / (3.51 \times 10^{-2} \times 1.86 \times 10^{11})$	1
	$12.8 \times 9.81 \times 7.65$ / (3.51 × 10 ⁻⁶ × 1.86 × 10 ¹¹) or 1.47×10^{-7} (m)	1
	1.47 × 10 ⁻³ (m) or 1.47 mm	1

Question	Answer	Marks
2(b)(ii)	(energy =) ¹ / ₂ Fx or ¹ / ₂ × 12.8 × 9.81 × 1.47 × 10 ⁻³	1
	0.0924 (J)	1

Question	Answer	Marks
3(a)(i)	(momentum =) mass × velocity	1
3(a)(ii)	change in momentum or force × time	1
3(b)(i)	any two from air resistance <u>varies</u> (with speed) or flaps moved friction (with ground / runway / tarmac) <u>varies</u> thrust / (resultant) force varies mass of fuel decreases / fuel used up	2
3(b)(ii)	mentions area <u>under</u> graph	1
	$(\frac{1}{2} \times 5 \times 1.13 \times 10^5)$ + $(20 \times 1.13 \times 10^5)$ or 2.54×10^6	1
	$(30 \times 1.05 \times 10^5 =)3.15 \times 10^6$	1
	$(2.54 \times 10^6 + 3.15 \times 10^6 =)5.69 \times 10^6 (N s)$	1
3(b)(iii)	$(v = p / m \text{ or } 5.69 \times 10^6 / 7.31 \times 10^4) 77.9 \text{ (m s}^{-1})$	1
3(b)(iv)	curve of increasing gradient from origin	1
	line of constant gradient and decreasing positive gradient after 25.0 s	1
	gradient at 5.0 s remains constant	1
3(b)(v)	area under graph or (candidate's (b)(iii) / 2) × 55.0	1
	2000–3200 (m)	1

Question	Answer Ma						Marks			
4(a)(i)	at a junction, the algebraic sum of t	he curre	nts is zero)						1
4(a)(ii)	4(a)(ii) current I_1 I_2 I_3 I_4 I_5 I_6 I_7									
	/ A	3.25	2.15	1.10	0.25	1.90	1.35	3.25		
	<i>I</i> ₁ = 3.25 and <i>I</i> ₇ = 3.25 cao									1
	$I_4 = 0.25$ and $I_6 = 1.35$ cao									1
4(b)(i)	in a closed loop, the sum of the em	n a closed loop, the sum of the emfs equals the sum of the pds								1
4(b)(ii)	$V_1 = 2.4$ (V) and $V_3 = 8.0$ (V) cao									1
	V ₂ = 1.6 (V) cao									1
4(b)(iii)	B to A or upwards									1
	potential of A is 8.0 V and potential	of B is 9	9.6 V							1
4(c)	first law: charge (conserved)									1
	second law: energy (conserved)									1

Question	Answer	Marks
5(a)	$(\sin r = \sin 60.0^{\circ} / 1.54); (r =)34.2(^{\circ})$	1
	(length of ray in glass = 8.85 / cos 34.2° =)10.7 (cm)	1
	(60.0° – 34.2° =) 25.8(°)	1
	(displacement = 10.7 × sin (25.8°) =) 4.65 (cm)	1

Question	Answer	Marks
5(b)	ray with a smaller value of <i>r</i> and <i>r</i> > 0	1
	emerging parallel to the incident ray	1

Question	Answer	Marks
6(a)	two sine waves in antiphase	1
	intermediate sine waves	1
6(b)	a second sine wave of same wavelength on same axis	1
	separated by a quarter of the wavelength	1
6(c)	plane parallel wavefronts before the opening	1
	three (or more) wavefronts showing substantial diffraction after the opening	1
	same wavelength and greater than gap width	1

Question	Answer	Marks
7(a)	${}^{235}_{92}U + {}^{1}_{0}n \rightarrow ({}^{236}_{92}U \rightarrow) {}^{143}_{54}Xe + {}^{90}_{38}Sr + 3{}^{1}_{0}n \ (+ energy)$	
	left-hand side correct	1
	three neutrons on right	1
	rest of right-hand side correct	1
7(b)(i)	more than one neutron is produced	1
	more reactions started	1

Question	Answer	Marks
7(b)(ii)	to prevent the reaction rate/energy released/temperature increasing continuously or to prevent meltdown or to absorb neutrons	1
7(c)	(energy released =) $2.15 \times 10^8 \times 1.60 \times 10^{-19}$ or 3.44×10^{-11} (J)	1
	(energy required =)25.6 \times 4190 \times 42.0 or 4.51 \times 10 ⁶ (J)	1
	(number required =)4.51 \times 10 ⁶ / 3.44 \times 10 ⁻¹¹	1
	1.31×10^{17}	1
7(d)	720 / 28.8 or 25 (half-lives) or (A =) $4.93 \times 10^8 \times e^{-0.0241} \times {}^{720}$	1
	4.93×10^8 / 2^{25} or (λ =)ln(2) / 28.8 or 0.693 / 28.8 or 0.0241 (yr ⁻¹)	1
	14.7 (Bq)	1

Question	Answer					
8(a)(i)(ii)	(i) any two of:	(ii) explanation to match (i)	2 + 2			
	immediate emission (even with weak illumination) existence of threshold frequency (maximum) KE not influenced by intensity (maximum) KE depends on frequency photoelectric current is (directly) proportional to intensity existence of stopping potential / maximum KE value	electron emitted when one photon absorbed photon energy depends on frequency all photons have the same energy (and only one is absorbed) photon energy depends on frequency or only one photon absorbed number of photons is (directly) proportional to intensity no more energy absorbed than that of one photon				
8(b)(i)	vary position of sliding contact		1			
	measure V when $I = 0$		1			

Question	Answer	Marks
8(b)(ii)	vary frequency (and measure stopping voltage)	1
	plot stopping voltage against frequency or use of $hf = \Phi + eV_S$	1
	(Planck constant =)e × gradient or eliminate Φ and find h	1

Question	Answer	Marks
9(a)	(600 / 120 =) 5.0 (hours)	1
9(b)(i)	any three points: increases quickly at first increases quickly until 10–15% charge rate of increase decreases between 15 and 50% charge then increases more slowly after 50% charge	3
9(b)(ii)	large increase in temperature / overheating	1
	large increase in pressure	1
	deposit of electrolyte at vent	1
9(c)(i)	substitution of E_{net} and r_{net} in $E=I(R+r)$ 3.72 = $I(4.3 + 2.7)$	1
	(I =)0.53 (A)	1
9(c)(ii)	clockwise arrow drawn on Fig. 9.2	1

Question	Answer	Marks
9(c)(iii)	$(V =)4E - 4Ir \text{ or } (4 \times 1.24) - (0.53 \times 4 \times 0.54)$	1
	3.81 (V)	1
	or ($V = E + I(R + r) =$) 1.24 + 0.53(4.3+0.54)	(1)
	3.81 (V)	(1)
9(d)(i)	when top / M is positive the current direction is MOP(N) or in W, left to right in cell (and in Z)	1
	when bottom / N is positive the current direction is NOP(M) or in Y, left to right in cell (and in X)	1
9(d)(ii)	1 (the supply) voltage is less than voltage of cell / 1.24 V or less then the voltage needed across diodes / 1.4 V	1
	2 150 – 175 (2 mm) squares or $3.75 - 4.35 \times 10^{-4}$ (C)	1
	$3.90 - 4.20 \times 10^{-4}$ (C)	1
9(d)(iii)	2160 (C) or 21.6 / candidate's (ii)2	1
	51 400–55 400 s or 14.3–15.4 hours	1
9(e)(i)	voltage across capacitor increases (as it charges)	1
	decrease in pd across resistor reduces the current	1
	zero when the two pds are equal	1
9(e)(ii)	(calculation of time constant <i>CR</i> = $6.25 \times 10^{-5} \times 0.54$ =) $3.37 / 8 \times 10^{-5}$ (s)	1
	$2.0 \times 10^{-4} / 3.38 \times 10^{-5} \approx 6$ or calculation of Q after 0.20 ms or 7.729×10^{-5} (C)	1
	correct conclusion (almost fully charged)	1