## Cambridge International Examinations

## Cambridge Pre-U Certificate

9792/01
May/June 2017
1 hour 30 minutes

## Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser
Soft pencil (type B or HB is recommended)

## READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any working should be done in this booklet.
Electronic calculators may be used.

## Data

gravitational field strength close to Earth's surface elementary charge
speed of light in vacuum
Planck constant
permittivity of free space
gravitational constant
electron mass
proton mass
unified atomic mass constant
molar gas constant
Avogadro constant
Boltzmann constant
Stefan-Boltzmann constant

$$
\begin{aligned}
g & =9.81 \mathrm{Nkg}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
h & =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
m_{\mathrm{e}} & =9.11 \times 10^{-31} \mathrm{~kg}^{2} \\
m_{\mathrm{p}} & =1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
u & =1.66 \times 10^{-27} \mathrm{~kg}^{2} \\
R & =8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
N_{\mathrm{A}} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{JK}^{-1} \\
\sigma & =5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}
\end{aligned}
$$

## Formulae

uniformly accelerated

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a s \\
s & =\left(\frac{u+v}{2}\right) t \\
\Delta E & =m c \Delta \theta
\end{aligned}
$$

motion
heating
change of state

$$
\Delta E=m L
$$

refraction

$$
n=\frac{\sin \theta_{1}}{\sin \theta_{2}}
$$

$$
n=\frac{v_{1}}{v_{2}}
$$

diffraction

| single slit, minima | $n \lambda=b \sin \theta$ |
| :--- | :--- |
| grating, maxima | $n \lambda=d \sin \theta$ |
| double slit interference | $\lambda=\frac{a x}{D}$ |
| Rayleigh criterion | $\theta=\frac{\lambda}{b}$ |
| photon energy | $E=h f$ |


| de Broglie wavelength | $\lambda=\frac{h}{p}$ |
| :--- | :--- |
| simple harmonic motion | $x=A \cos \omega t$ |
| $v$ | $=-A \omega \sin \omega t$ |
| $a$ | $=-A \omega^{2} \cos \omega t$ |
| $F$ | $=-m \omega^{2} x$ |
| $E$ | $=\frac{1}{2} m A^{2} \omega^{2}$ |

energy stored in a $\quad W=\frac{1}{2} Q V$
capacitor
capacitor discharge $\quad Q=Q_{0} e^{-\frac{t}{R C}}$
electric force
$F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$
electrostatic potential energy
$W=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r}$
gravitational force
$F=-\frac{G m_{1} m_{2}}{r^{2}}$
gravitational potential $\quad E=-\frac{G m_{1} m_{2}}{r}$ energy
$F=B I l \sin \theta$
$F=B Q v \sin \theta$

| electromagnetic induction | $E=-\frac{\mathrm{d}(N \Phi)}{\mathrm{d} t}$ |
| :---: | :---: |
| Hall effect | $v=B v d$ |
| time dilation | $t^{\prime}=\frac{t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ |
| length contraction | $l^{\prime}=l \sqrt{1-\frac{v^{2}}{c^{2}}}$ |
| kinetic theory | $\frac{1}{2} m\left\langle c^{2}\right\rangle=\frac{3}{2} k T$ |
| work done on/by a gas | $W=p \Delta V$ |
| radioactive decay | $\frac{\mathrm{d} N}{\mathrm{~d} t}=-\lambda N$ |
|  | $N=N_{0} e^{-\lambda t}$ |
|  | $t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$ |

attenuation losses

$$
I=I_{0} \mathrm{e}^{-\mu x}
$$

mass-energy equivalence $\quad \Delta E=c^{2} \Delta m$
hydrogen energy levels $\quad E_{n}=\frac{-13.6 \mathrm{eV}}{n^{2}}$

Heisenberg uncertainty $\Delta p \Delta x \geqslant \frac{h}{2 \pi}$
principle
Wien's displacement law $\quad \lambda_{\text {max }} \propto \frac{1}{T}$

Stefan's law

$$
L=4 \pi \sigma r^{2} T^{4}
$$

electromagnetic radiation
from a moving source $\quad \frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}$

1 A rod XY of weight 16 N is hinged at X and supported by a string at Y . The string is at an angle of $30^{\circ}$. The tension in the string is 16 N .


What is the horizontal component of the force acting at $X$ ?
A 8.0 N
B 9.0 N
C $\quad 14 \mathrm{~N}$
D 16 N

2 A cylindrical drum has radius $r$ and weight $W$. The drum is to be rolled over onto a step of height $\frac{r}{2}$ by a horizontal force $F$ applied to the top of the drum.


What is the minimum force $F$ required for the drum to start rolling on the step?
A $\frac{W}{2}$
B $\frac{W}{\sqrt{3}}$
c $W$
D $\frac{\sqrt{3}}{2} w$

3 When a stationary nucleus undergoes alpha decay the resulting nucleus recoils in the opposite direction to the emitted alpha particle. The alpha particle is emitted with momentum $p$ and kinetic energy $E$.

The mass of the recoiling nucleus is 50 times greater than the mass of the alpha particle.
What are the magnitudes of the momentum and kinetic energy of the recoiling nucleus?

|  | momentum | kinetic energy |
| :---: | :---: | :---: |
| A | $p$ | $E$ |
| B | $p$ | $\frac{E}{50}$ |
| C | $\frac{p}{50}$ | $E$ |
| D | $\frac{p}{50}$ | $\frac{E}{50}$ |

4 On a journey from Alphatown to Betaville, a train accelerates uniformly from rest to $30.0 \mathrm{~m} \mathrm{~s}^{-1}$ in one minute. It then continues at constant speed for three minutes before decelerating uniformly to rest again in two minutes.

What distance does the train travel from Alphatown to Betaville?
A 135 m
B 180 m
C 8.10 km
D 10.8 km

5 A mass $m$ is situated in a uniform gravitational field of strength $g$.
Which row describes the force on the mass due to the gravitational field?

|  | magnitude of force | direction of force |
| :---: | :---: | :---: |
| A | $g$ | in direction of field |
| B | $g$ | in opposite direction to field |
| C | $m g$ | in direction of field |
| D | $m g$ | in opposite direction to field |

6 The graph shows how the extension $x$ of a wire fixed at its upper end varies with the force $F$ applied at the lower end.


The wire is of unstretched length $L$, cross-sectional area $A$, and made of material of Young modulus $E$.

Which expression is equal to the gradient of the graph?
A $\frac{E A}{L}$
B $\frac{E L}{A}$
C $\frac{A}{E L}$
D $\frac{L}{E A}$

7 A scale model of a table is made so that all its linear dimensions are one tenth of those of the real table (scale 1:10). The model is made from the same wood as the table.
What is the value of $\frac{\text { stress in the legs of the model }}{\text { stress in the legs of the real table }}$ ?
A 0.001
B 0.01
C 0.1
D 1

8 An electric motor is $40 \%$ efficient. When operating at full power, it has a useful power output of 2.0 kW .

How much electrical energy is transferred at full power in one minute?
A 0.80 kJ
B 5.0 kJ
C 48 kJ
D 300 kJ

9 On the rollercoaster section shown, a car and passenger of total mass 400 kg travels at a speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$ as it passes through point $P$.


At which speed will the car and passengers pass through point $Q$ ?
Assume that frictional forces are negligible.
A $20 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 22 \mathrm{~m} \mathrm{~s}^{-1}$
C $24 \mathrm{~m} \mathrm{~s}^{-1}$
D $30 \mathrm{~m} \mathrm{~s}^{-1}$

10 In a refrigerator, freon is evaporated at a rate of $4.0 \mathrm{kgh}^{-1}$. The thermal energy required to achieve this comes from a tray of water at $0^{\circ} \mathrm{C}$ in the refrigerator that is changed to become ice.

| substance | specific latent heat of <br> fusion $/ \mathrm{kJ} \mathrm{kg}^{-1}$ | specific latent heat of <br> vaporisation $/ \mathrm{kJ} \mathrm{kg}^{-1}$ |
| :---: | :---: | :---: |
| freon | 50 | 150 |
| water | 330 | 2300 |

What is the minimum time required to freeze 400 g of water?
A 13 minutes
B 40 minutes
C 92 minutes
D 280 minutes

11 A metal wire is moulded so that its circular cross-section decreases.


The resistance $R$ of the wire is measured between end $P$ and $Q$, a distance $x$ from $P$.
Which graph shows the variation of $R$ with $x$ as $Q$ is moved from end $P$ to the other end of the wire?
A





12 The diagram shows two batteries of electromotive force (emf) 6.0 V and 4.0 V connected in a circuit.


The internal resistance of each battery is negligible.
What is the current in the battery of emf 4.0 V ?
A 0.05 A
B $\quad 0.15 \mathrm{~A}$
C $\quad 0.20 \mathrm{~A}$
D $\quad 0.25 \mathrm{~A}$

13 The batteries in an electric car can be recharged by connecting them to an electrical supply operating at 230 V and supplying 8.0A for 10 hours.

Which row gives the charge that passes through the batteries and the work done by the charger during the charging process?

|  | charge/C | work/J |
| :---: | :---: | :---: |
| A | 80 | 1840 |
| B | 80 | $6.6 \times 10^{7}$ |
| C | $2.9 \times 10^{5}$ | 1840 |
| D | $2.9 \times 10^{5}$ | $6.6 \times 10^{7}$ |

14 Which wave phenomenon cannot be exhibited by both light and sound?
A diffraction
B polarisation
C refraction
D superposition

15 A wave of wavelength 2.5 m is set up on an oscillating string which completes 1200 oscillations in one minute. The amplitude of the wave is 3.0 mm .

A new wave is then set up on the same string with four times the intensity of the previous one and double the wavelength.

Which row correctly gives the amplitude and frequency of this second wave?

|  | amplitude $/ \mathrm{mm}$ | frequency $/ \mathrm{Hz}$ |
| :---: | :---: | :---: |
| A | 6.0 | 10 |
| B | 6.0 | 600 |
| C | 12 | 10 |
| D | 12 | 600 |

16 The diagram shows a light ray passing from air into a rectangular glass block and exiting into the air on the opposite side.


Which statement is not correct?
A As $\theta$ increases from $0^{\circ}$ to $90^{\circ}, \phi$ also increases from $0^{\circ}$ to $90^{\circ}$.
B However large $\theta$ becomes, total internal reflection cannot occur at the upper boundary.
C If the ray direction is reversed it will retrace the same path through the glass.
D When $\theta$ exceeds a certain value, total internal reflection occurs at the lower boundary.

17 A standing wave is set up on a string. Two points $P$ and $Q$ on the string are located, as shown.


Which row correctly describes the phase difference and maximum speed of the vibrations of the two points?

|  | phase <br> difference | maximum <br> speed |
| :---: | :---: | :---: |
| A | $\pi$ rad | different |
| B | zero | different |
| C | $\pi$ rad | same |
| D | zero | same |

18 Monochromatic light of wavelength 600 nm diffracts through a single slit of width 0.01 mm .
What is the angular width of the central maximum of the diffraction pattern?
A $0.0034^{\circ}$
B $0.0069^{\circ}$
C $3.4^{\circ}$
D $6.9^{\circ}$

19 The induced nuclear fission of uranium- 235 can create many different pairs of daughter nuclei. Which nuclear transformation correctly represents such an induced fission?

A $\quad{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{144} \mathrm{X}+{ }_{36}^{90} \mathrm{Y}+3{ }_{0}^{1} \mathrm{n}$
B $\quad{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{56}^{144} \mathrm{X}+{ }_{36}^{90} \mathrm{Y}+{ }_{0}^{1} \mathrm{n}$
C $\quad{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{56}^{144} \mathrm{X}+{ }_{36}^{90} \mathrm{Y}+2{ }_{0}^{1} \mathrm{n}$
D $\quad{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{145} \mathrm{X}+{ }_{36}^{91} \mathrm{Y}$

20 Nuclide X decays to stable nuclide Y with a half-life of $T$ years.
Geologists are sure that nuclide $Y$ found in a particular rock sample has all come from nuclide $X$ which was present when the rock formed.

The rock is thought to be $3 T$ years old.
What is the expected ratio for this rock of $\frac{\text { number of atoms of } X}{\text { number of atoms of } Y}$ ?
A $\frac{1}{6}$
B $\frac{1}{7}$
C $\frac{1}{8}$
D $\frac{1}{9}$

21 The rate of rotation of a DVD during playback varies from 570 to 1600 revolutions per minute.
What is the maximum angular velocity of the DVD during playback?
A $27 \mathrm{rads}^{-1}$
B $60 \mathrm{rads}^{-1}$
C $170 \mathrm{rads}^{-1}$
D $10000 \mathrm{rad} \mathrm{s}^{-1}$

22 A simple pendulum consists of a mass of 0.200 kg on a light inextensible string of length 1.20 m . The mass is displaced sideways until it has risen 0.050 m from its equilibrium position and then it is released.

What is the tension in the string as the mass passes through its lowest position?
A $\quad 0.363 \mathrm{~N}$
B $\quad 1.80 \mathrm{~N}$
C $\quad 1.96 \mathrm{~N}$
D $\quad 2.13 \mathrm{~N}$

23 An object undergoes simple harmonic motion.
Which of the following is not true of its motion?
A The acceleration is always towards its equilibrium position.
B The acceleration is directly proportional to its displacement from equilibrium.
C The kinetic energy is directly proportional to the amplitude of its oscillation.
D The potential energy increases with the square of its distance from equilibrium.

24 A small mass on a vibrating platform undergoes simple harmonic motion. The total energy of the mass is 18 mJ .

The amplitude of the oscillation is now doubled and the time period is increased to be three times as long.

What is the new total energy of the mass?
A 8 mJ
B 12 mJ
C 36 mJ
D 72 mJ
$25 \mathrm{~A} 33 \mu \mathrm{~F}$ capacitor is in series with a microammeter and a variable voltage power supply.


The capacitor is initially uncharged. The voltage across the power supply is then varied so that a current of $10 \mu \mathrm{~A}$ flows for 5.0 s .

By how much does the energy stored in the capacitor increase?
A $8.3 \times 10^{-16} \mathrm{~J}$
B $3.8 \times 10^{-5} \mathrm{~J}$
C 0.76 J
D 38 J

26 A charged capacitor is discharged through a resistor. A student measures the voltage $V$ across the capacitor as a function of time $t$ as the capacitor discharges.

He then plots a graph of the natural logarithm of $V(\ln V)$ against $t$ and determines its gradient $m$.
Which expression is equal to the time constant for the discharge circuit?
A $m$
B $-m$
C $\frac{1}{m}$
D $\frac{-1}{m}$

27 Two point charges, $S$ and $T$, are separated by a distance of 30 mm . The charge on $S$ is $+Q$ and the charge on $T$ is $+4 Q$.


How far from $S$ will the electric fields of the two charges be equal in size and opposite in direction?
A 6 mm
B 10 mm
C 20 mm
D 24 mm

28 What is the ratio $\frac{\text { force of gravity on Earth due to Sun }}{\text { force of gravity on Earth due to Moon }}$ ?

$$
\begin{aligned}
& \text { mass of Sun }=2.0 \times 10^{30} \mathrm{~kg} \\
& \text { mass of Moon }=7.4 \times 10^{22} \mathrm{~kg}
\end{aligned}
$$

$$
\text { mean distance between Earth and Moon }=3.8 \times 10^{8} \mathrm{~m}
$$

$$
\text { mean distance between Earth and Sun }=1.5 \times 10^{11} \mathrm{~m}
$$

A 170
B $6.8 \times 10^{3}$
C $1.1 \times 10^{10}$
D $4.2 \times 10^{12}$

29 A moon orbits a planet at a radius of $R$. Its orbital period is $T$.
A second moon orbits at a radius of $\frac{2}{3} R$.
In terms of $T$, what is the orbital period of the second moon?
A $0.30 T$
B $0.54 T$
C $\quad 1.8 T$
D $3.4 T$

30 In the equation shown, what does the symbol $\Phi$ represent?

$$
E=\frac{-\mathrm{d}(N \Phi)}{\mathrm{d} t}
$$

A magnetic flux
B magnetic flux density
C magnetic flux linkage
D rate of change of magnetic flux linkage

31 Charged particles created in high energy collisions at particle accelerators such as the Large Hadron Collider at CERN are detected as they pass through strong magnetic fields. The curvature of the particle paths in the magnetic field can be used to calculate certain properties of the particles.

Two charged particles, X and Y , deflect in the same direction as they leave a collision but their paths have different curvatures. The radius of curvature for particle X is double that for Y .

Which statement explains this?
A The particles are identical but particle X is moving at twice the velocity of Y .
B The particles are travelling at the same speed but the ratio of mass to charge for $Y$ is double the ratio of mass to charge for $X$.

C The particles have the same momentum but particle X has double the charge of particle Y .
D The particles have the same velocity and charge but particle $Y$ has double the mass of particle X.

32 A cylinder with a movable piston contains a constant mass of an ideal gas. The gas is slowly compressed at constant temperature until its volume has halved. The work done to compress the gas is $W$.

Which row gives the heat flow $Q$ into the gas and the change in the internal energy $\Delta U$ of the gas?

|  | $Q$ | $\Delta U$ |
| :---: | :---: | :---: |
| $\mathbf{A}$ | $-W$ | 0 |
| $\mathbf{B}$ | $-W$ | $W$ |
| $\mathbf{C}$ | 0 | 0 |
| $\mathbf{D}$ | 0 | $W$ |

33 The number and speed of some gas molecules is given in the table.

| number of molecules | molecule speed $/ \mathrm{m} \mathrm{s}^{-1}$ |
| :---: | :---: |
| 1 | 200 |
| 1 | 300 |
| 3 | 400 |
| 2 | 500 |
| 1 | 600 |

What is the root mean square speed of the gas molecules?
A $400 \mathrm{~m} \mathrm{~s}^{-1}$
B $403 \mathrm{~m} \mathrm{~s}^{-1}$
C $413 \mathrm{~m} \mathrm{~s}^{-1}$
D $429 \mathrm{~m} \mathrm{~s}^{-1}$

34 A flask contains 0.800 moles of an ideal gas at a temperature of 300 K .
What is the total kinetic energy of the molecules of the gas?
A $5.0 \times 10^{-21} \mathrm{~J}$
B $6.2 \times 10^{-21} \mathrm{~J}$
C $3.0 \times 10^{3} \mathrm{~J}$
D $3.7 \times 10^{3} \mathrm{~J}$

35 The density of air is $1.20 \mathrm{~kg} \mathrm{~m}^{-3}$ at a temperature of $20^{\circ} \mathrm{C}$ and standard atmospheric pressure. What is the density of air at a temperature of $27^{\circ} \mathrm{C}$ and standard atmospheric pressure?
A $0.89 \mathrm{~kg} \mathrm{~m}^{-3}$
B $\quad 1.17 \mathrm{~kg} \mathrm{~m}^{-3}$
C $\quad 1.23 \mathrm{~kg} \mathrm{~m}^{-3}$
D $\quad 1.62 \mathrm{~kg} \mathrm{~m}^{-3}$

36 What is meant by the term nuclear binding energy?
A the difference between the mass of a nucleus and the mass of its constituent nucleons
B the energy equivalent to the mass of the nucleus calculated by $\Delta E=c^{2} \Delta m$
C the total energy stored in the bonds between nucleons inside a nucleus
D the work that must be done to completely separate all the nucleons inside a nucleus

37 A source of gamma-radiation is surrounded by a protective layer of lead.
The protective layer must reduce the intensity of the gamma-radiation by $75 \%$. The attenuation coefficient of lead for these gamma-rays is $1.13 \mathrm{~cm}^{-1}$.

Which thickness of lead is required?
A 0.11 cm
B 0.25 cm
C $\quad 0.53 \mathrm{~cm}$
D $\quad 1.2 \mathrm{~cm}$

38 The diagram shows electron energy levels for a hydrogen atom.


$$
-13.6 \mathrm{eV} \longrightarrow \text { ground state } \mathrm{n}=1
$$

Which electron transfers could occur with the emission of visible light?
A $\mathrm{n}=2$ to $\mathrm{n}=3$
B $\mathrm{n}=3$ to $\mathrm{n}=2$
C $\mathrm{n}=3$ to $\mathrm{n}=4$
D $\mathrm{n}=4$ to $\mathrm{n}=3$

39 When the emission spectrum of hydrogen gas is observed in the laboratory, a certain line is found at a wavelength of 656 nm .

The same line, viewed in the spectrum from a distant galaxy, is observed at 659 nm .
How far away is the galaxy? Use $H_{0}=65 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ for the Hubble constant.
A 21 Mpc
B $\quad 4.6 \times 10^{3} \mathrm{Mpc}$
C $\quad 21 \times 10^{3} \mathrm{Mpc}$
D $4.6 \times 10^{6} \mathrm{Mpc}$

40 Stars emit electromagnetic radiation across a range of wavelengths. For each star there is one wavelength $\lambda_{\text {max }}$ at which the intensity of electromagnetic radiation is a maximum.

The table shows the values of $\lambda_{\max }$ and luminosity $L$ for the Sun and another star.

|  | $\lambda_{\max } / \mathrm{nm}$ | luminosity $L / W$ |
| :---: | :---: | :---: |
| Sun | 520 | $3.9 \times 10^{26}$ |
| star | 660 | $1.9 \times 10^{26}$ |

The radius of the Sun is $7.0 \times 10^{8} \mathrm{~m}$.
What is the radius of the star?
A $3.0 \times 10^{8} \mathrm{~m}$
B $6.2 \times 10^{8} \mathrm{~m}$
C $7.9 \times 10^{8} \mathrm{~m}$
D $1.6 \times 10^{9} \mathrm{~m}$

[^0]
[^0]:    Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

    To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

    Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

