MARK SCHEME for the October/November 2013 series

9792 PHYSICS

9792/02

Paper 2 (Written Paper), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U – October/November 2013	9792	02

Se	Section A [75 marks]									
	Q	Marking Points	Marks	Tot	tals					
1	(a)	(In Fig. 1.2) weight vertically down and (tension) force in string force of wind on kite upwards and to right three forces shown in equilibrium	1 1 1	3						
	(b)	(In Fig. 1.3) weight and force of wind only shown explanation of how these two forces cannot be in equilibrium	1 1	2	5					

2	(a) (i)	(pressure) = <i>hpg</i> = 1.4 × 1000 × 9.8 13700 or 1.37 × 10 ⁴ (Pa)	1 1		
	(ii)	$(3.2 \times 1000 \times 9.8) = 31400$ or 3.14×10^4 (Pa)	1	3	
	(b)	pressure difference = 31400 –13700 = 17700 or 1.77 ×10 ⁴ (Pa) ecf from (a)(i) and (a)(ii) resultant force = 17700 × 0.45 = 7970 or 7.97 ×10 ³ (N)	1 1	2	
	(c)	volume of cylinder = $0.45 \times 1.8 = 0.81 \text{ (m}^3\text{)}$ mass of cylinder = $0.81 \times 2400 = 1944$ or $1.944 \times 10^3 \text{ (kg)}$ weight of cylinder = $1944 \times 9.8 = 19050$ or $1.905 \times 10^4 \text{ (N)}$ force on rod = $19050 - 7970 = 11100$ or $1.11 \times 10^4 \text{ (N)}$ ecf from 2(b)	1 1 1	3	8

3	(a)	(i)	brittle: a material that has (almost) zero plastic behaviour e.g. cast iron, ceramic, brick	1 1		
		(ii)	<u>tough</u> : a material with a high resistance to breaking or large plastic deformation e.g. copper, mild steel, epoxy resin, (some) plastics	1 1		
	((iii)	<u>ductile</u> : a material that can be plastically extended (drawn) <u>into a</u> <u>wire</u> e.g. copper (wire), (mild) steel not just metal	1 1	6	
	(b)	(i)	Young modulus = stress/strain values taken near end of straight line region of graph e.g. stress = 4×10^9 Pa; strain = 0.024 ± 0.001 E = $4 \times 10^9/0.024 = 1.7 \times 10^{11}$ (Pa)	1 1 1		
		(ii)	5.9 × 10 ⁹ (Pa)	1	4	
	(c)		$5.9 \times 10^9 \times 4.2 \times 10^{-7} = 2480$ or 2.48×10^3 (N)	1	1]
	(d)		(as the sample is stretched) the cross-sectional area is not constant cross-sectional area <u>decreases</u>	1 1	2	13

	Page 3		Mark Scheme	Syllabu	S	Papei	٢
			Pre-U – October/November 2013	9792		02	
							r
4	(a)	same shape graph displaced <u>forwards</u> by between one and two months maximum at 20.5 °C <u>and</u> minimum at 7.5 °C <u>reason</u> : high thermal capacity (or equivalent) of the sea				3	
4	(b) (i)	energe ecf find $= mc$ $\Delta \theta = = 3.5$	energy supplied = $0.6 \times 6.7 \times 1000 \times 3600 = 1.45 \times 10^7$ (J) ecf from reading from graph = $mc\Delta\theta$ = $1000 \times 4200 \times \Delta\theta$ $\Delta\theta$ = $1.45 \times 10^7/4.2 \times 10^6$ = 3.5 (°C)		1 1 1		
	(ii) durir by ra plus e.g. volu		g the night (a lot of) thermal energy (heat) will be lost (diation and/or convection another valid reason nixing effect of waves will distribute energy (over a larg ne)	to the air) ger	1 1 1		
		e.g. \	variable cloud cover will affect (rise and) fall of temper	ature		6	9

5	(a)	emf: energy per unit charge	1		
		supply	1		
		terminal pd: energy per unit charge available at the terminals of the supply for conversion from electrical energy into other forms of			
		energy	1	3	
	(b) (i)	9.6 (V) (pd AB = 4.8 mA × 2.0 kΩ)	1		
	(ii)	3.2 (mA) (current A to C = $8.0 \text{ mA} - 4.8 \text{ mA}$)	1		
	(iii)	12.8 (V) (pd AC = $3.2 \text{ mA} \times 4.0 \text{ k}\Omega$) ecf from (b)(ii)	both		
	(iv)	3.2(V) (pd BC = 12.8V – 9.6V) ecf from (b)(i) and (b)(iii)	1		
	(v)	0.4 (mA) (current BC = $3.2 V/8.0 k\Omega$) ecf from (b)(iv)	1		
	(vi)	4.4 (mA) (current BD = 4.8 mA – 0.4 mA) ecf from (b)(v)			
	(vii)	3.6 (mA) (current CD = 8.0 mA – 4.4 mA) ecf from (b)(vi)	three		
	(viii)	7.2V (pd CD = 20V – 12.8V) ecf from (b)(iii)			
	(ix)	2.0 (k Ω) (Resistance R ₂ = 7.2 V/3.6 mA)			
		ect from (b)(vii) and (b)(viii)	1		
	(x)	8.0(mA) (current from D to battery)	1	7	
	(c)	for series addition the current through each resistor must be the	1		
		resistors must be the same			
		neither is true in this case	1	2	
	(d)	(R =) 20 V/8.0 mA	1		
	. ,	= 2500Ω or $2.5 k\Omega$	1	2	14
			1	-	

	Page 4		Mark Scheme	Syllabu	IS	Pape	r
			Pre-U – October/November 2013	9792		02	
6	(a)	(wav	elength =) 340/12000 = 2.83 × 10 ⁻² (m) or 2.83 cm or	1	1		
	(b) (i)	at lea only t	ast a double wave drawn with obvious nodes and antin three antinodes shown or labelled	1 1			
	(ii)	wave	elength (= 2.83 cm) correctly shown		1	3	
	(c)	partic so at next	cles either side of a node are moving in opposite direct one moment they increase the pressure (at a node) a moment they reduce the pressure	ions nd the	1 1	2	
	(d)	time time time	for S–waves = 3300/2.7 = 1220 s or 1.22 × 10 ³ s for P–waves = 3300/4.3 = 770 s interval = 1200 –770 = 450 (s)		1 1	2	8

	alpha	beta	gamma				
nature	particle	particle	electromagnetic	both	1		
charge +2e -e zero		2					
mass 4u 5.44 × 10 ⁻ 4 u zero both		1					
penetrating power	stopped by a piece of paper	stopped by thin aluminium (1 – 5mm)	Stopped by thick lead		2		
ionising ability	high	some	small		2	8	
sources: cosr food (and/or c incidents/nuc air travel/lum any two	nic rays fro drink)/air/fa clear power inous watcl	m space / medical all-out from Cherr / radon gas (from nes	procedures/fertilise hobyl/Fukushima/nu the ground)/rocks/	ers/ uclear	2		
how reduced: travel/insulat basements/s particles/redu any two relev	air ser	2	4				
 i) <u>random</u>: (slight) variation in counts per second/count rate in a given time interval 							
spontaneous: pressure/temperature/chemical reactions have no effect on the rate of decay						2	14
	nature charge mass penetrating power ionising ability sources: cosr food (and/or of incidents / nucleants / nucle	alphanatureparticlecharge+2emass4upenetrating powerstopped by a piece of paperionising abilityhighsources:cosmic rays from food (and/or drink)/air/fa incidents/nuclear power air travel/luminous watch any twohow reduced:shielding/n travel/luminous watch any twohow reduced:shielding/n travel/insulating houses basements/safe disposa particles/reducing unneo any two relevant to sourandom:(slight) variation time intervalspontaneous:pressure/fa	alphabetanatureparticleparticlecharge+2e-emass4u5.44 × 10 ⁻⁴ upenetrating powerstopped by a piece of paperstopped by thin aluminium (1 – 5 mm)ionising abilityhighsomesources:cosmic rays from space/medical food (and/or drink)/air/fall-out from Cherr incidents/nuclear power/radon gas (from air travel/luminous watches any twohow reduced:shielding/moving (away fro travel/insulating houses (against radon ga basements/safe disposal of nuclear waste particles/reducing unnecessary exposure any two relevant to sourcesrandom:(slight) variation in counts per sectime intervalspontaneous:pressure/temperature/chere effect on the rate of decay	alphabetagammanatureparticleparticleelectromagneticcharge+2e-ezeromass4u5.44 × 10 ⁻⁴ uzeropenetrating powerstopped by a piece of paperstopped by thin aluminium (1 - 5 mm)Stopped by thick leadionising abilityhighsomesmallsources:cosmic rays from space/medical procedures/fertilise food (and/or drink)/air/fall-out from Chernobyl/Fukushima/nu incidents/nuclear power/radon gas (from the ground)/rocks/ air travel/luminous watches any twohow reduced:shielding/moving (away from sources)/limiting a travel/insulating houses (against radon gas)/ventilating basements/safe disposal of nuclear waste/not trapping fertilis particles/reducing unnecessary exposure any two relevant to sourcesrandom:(slight) variation in counts per second/count rate in a time intervalspontaneous:pressure/temperature/chemical reactions have effect on the rate of decay	alphabetagammanatureparticleparticleelectromagneticcharge+2e-ezeromass4u5.44 × 10 ⁻⁴ uzeropenetratingstoppedstopped by by aStopped by thin aluminium (1 - 5 mm)Stopped by thick leadionising abilityhighsomesmallsources:cosmic rays from space/medical procedures/fertilisers/ food (and/or drink)/air/fall-out from Chernobyl/Fukushima/nuclear incidents/nuclear power/radon gas (from the ground)/rocks/ air travel/luminous watches any twohow reduced:shielding/moving (away from sources)/limiting air travel/insulating houses (against radon gas)/ventilating basements/safe disposal of nuclear waste/ not trapping fertiliser particles/reducing unnecessary exposure any two relevant to sourcesrandom:(slight) variation in counts per second/count rate in a given time intervalspontaneous:pressure/temperature/chemical reactions have no effect on the rate of decay	alphabetagammanatureparticleparticleelectromagneticcharge+2e-ezeromass4u5.44 × 10 ⁻⁴ uzeropenetratingstoppedstopped by thin aluminium (1 - 5 mm)Stopped by thick leadionising abilityhighsomesmallsources:cosmic rays from space/medical procedures/fertilisers/ food (and/or drink)/air/fall-out from Chernobyl/Fukushima/nuclear incidents/nuclear power/radon gas (from the ground)/rocks/ air travel/luminous watches any two2how reduced:shielding/moving (away from sources)/limiting air travel/insulating houses (against radon gas)/ventilating basements/safe disposal of nuclear waste/not trapping fertiliser particles/reducing unnecessary exposure any two relevant to sources2random:(slight) variation in counts per second/count rate in a given effect on the rate of decay1	alphabetagammanatureparticleparticleelectromagneticcharge+2e-ezeromass4u5.44 × 10 ⁻⁴ uzeropenetrating powerstopped by a piece of apeerstopped by thin aluminium (1 - 5 mm)Stopped by thick leadionising abilityhighsomesmall2sources:cosmic rays from space/medical procedures/fertilisers/ food (and/or drink)/air/fall-out from Chernobyl/Fukushima/nuclear incidents/nuclear power/radon gas (from the ground)/rocks/ air travel/luminous watches any two2how reduced:shielding/moving (away from sources)/limiting air travel/insulating houses (against radon gas)/ventilating basements/safe disposal of nuclear waste/not trapping fertiliser particles/reducing unnecessary exposure any two relevant to sources2soontaneous:pressure/temperature/chemical reactions have no effect on the rate of decay1spontaneous:pressure/temperature/chemical reactions have no effect on the rate of decay1

	Page 5		Mark Scheme	Syllabu	IS	Pape	r
	Pre-U – October/November 2013 9792		9792		02		
8	8 (a) (wa = 6.		elength =) $h/p = h/mv$ 3 × 10 ⁻³⁴ /(9.11 × 10 ⁻³¹ × 3.0 × 10 ⁷) = 2.43 × 10 ⁻¹¹ (m)		1	2	
	(b)	idea of a diffraction pattern (on screen) circular pattern			1 1	2	4
		•			Sectio	n A tot	al 75

Se	Section B [25 marks]							
	Q	Marking Points	Marks	Totals				
9	(a) (i)	wavelength = 505 (seen) or f = c/λ or 5.05 × 10 ⁻⁷ m or 4.30 × 10 ⁻⁷ m (i.e. conversion from nm to metres)	1					
		3.00 × 10 ⁸ /5.05 × 10 ⁻⁷ 5.94 × 10 ¹⁴ (Hz)	1 1					
	(ii)	(E =) hf or $6.63 \times 10^{-34} \times 5.94 \times 10^{14}$ 3.94 × 10 ⁻¹⁹ (J) ecf from (a)(i)	1 1					
	(iii)	3.94 × 10 ⁻¹⁹ /1.60 × 10 ⁻¹⁹ 2.46 (eV) ecf from (a)(ii)	1 1	7				
	(b) (i)	Below this voltage not enough energy is supplied to an electron to promote it to the appropriate energy level	1					
	(ii)	For the blue LED the energy of the photons/band gap is greater and so more energy (pd is energy/unit charge) is required or vice versa for red LED	1	2				
	(c) (i)1	$v = c/n \text{ or } 3.00 \times 10^8/4.24$ 7.08 × 10 ⁷ (m s ⁻¹)	1 1					
	(i)2	$n = 1/\sin c \text{ or } c = \sin^{-1}(1/n) \text{ or } \sin c = 1/4.24$ 13.6°	1 1					
	(ii)	reflection enables more light to emerge in the forward direction total internal reflection (TIR) can be used to do this or the critical angle can be chosen to get the maximum emission where it is required or it increases the critical angle	1 1	6				
	(d) (i)	$(\mathbf{D} = \mathbf{V} \mathbf{V} \mathbf{o} \mathbf{r} + 0 \mathbf{A} \mathbf{A} \mathbf{x} \mathbf{A} \mathbf{E} 0$	1					
	(u) (I)	(P =) 1V or 0.44 × 4.50 1.98 (W)	1					
	(ii)	$(3.35/1.98) = 1.69 (Im W^{-1})$ ecf from (d)(i)	1	3				

	Page 6	Mark Sch	eme	Syllabu	IS	Paper	•
Γ		Pre-U – October/N	ovember 2013	9792		02	
		·		•			
	(e) do us sm do eff wh tor (la no Ch lov po rei IR Ind tra mo dir lig us d.0 UN us us tea lig no HI he an rei	estic: as indicator lights Il estic lighting ient/low energy consumption/ e light source nes e screen) TV/monitors acuum tube/thin/bright stmas tree lights etc. voltage device ered by batteries/portable/use bete control ED used <u>strial</u> : c lights orway information ctional display (e.g. ATM) emitted in one direction ap weight d in vehicles device ED d in sanitation/sterilisation d in medicine/for dermatitis <u>nological</u> : source for fibre optic cables/or varming up/immediate illumina V dlamps/fog lamps etc. sensible future use on for sensible future use	oowered by dynamo (win ed outside	nd-up)			
	Ma	imum 7 marks			7		25
					Section	B tota	al 25

Paper total 100