MARK SCHEME for the October/November 2013 series

9792 PHYSICS

9792/02

Paper 2 (Written Paper), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - October/November 2013	9792	02

Section A [75 marks]				
Q	Marking Points	Marks	Totals	
1 (a)	(In Fig. 1.2) weight vertically down and (tension) force in string force of wind on kite upwards and to right three forces shown in equilibrium	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	
(b)	(In Fig. 1.3) weight and force of wind only shown explanation of how these two forces cannot be in equilibrium	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	5

$\left.\begin{array}{|c|l|c|c|c|}\hline 2 & \text { (a) (i) } & \begin{array}{l}\text { (pressure })=h \rho g=1.4 \times 1000 \times 9.8 \\ 13700 \text { or } 1.37 \times 10^{4}(\mathrm{~Pa})\end{array} & 1 \\ 1\end{array}\right)$

3 (a) (i)	brittle: a material that has (almost) zero plastic behaviour e.g. cast iron, ceramic, brick	1 1		
(ii)	tough: a material with a high resistance to breaking or large plastic deformation e.g. copper, mild steel, epoxy resin, (some) plastics	1 1		
(iii)	ductile: a material that can be plastically extended (drawn) into a wire e.g. copper (wire), (mild) steel not just metal	1 1	6	
(b) (i)	$\begin{aligned} & \text { Young modulus }=\text { stress } / \text { strain } \\ & \text { values taken near end of straight line region of graph } \\ & \text { e.g. stress }=4 \times 10^{9} \mathrm{~Pa} \text {; strain }=0.024 \pm 0.001 \\ & E=4 \times 10^{9} / 0.024=1.7 \times 10^{11}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		
(ii)	$5.9 \times 10^{9}(\mathrm{~Pa})$	1	4	
(c)	$5.9 \times 10^{9} \times 4.2 \times 10^{-7}=2480$ or $2.48 \times 10^{3}(\mathrm{~N})$	1	1	
(d)	(as the sample is stretched) the cross-sectional area is not constant cross-sectional area decreases	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	13

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - October/November 2013	$\mathbf{9 7 9 2}$	$\mathbf{0 2}$

6 (a)	(wavelength $=$) $340 / 12000=2.83 \times 10^{-2}(\mathrm{~m})$ or 2.83 cm or 28.3 mm	1	1	
(b) (i)	at least a double wave drawn with obvious nodes and antinodes only three antinodes shown or labelled	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
(ii)	wavelength ($=2.83 \mathrm{~cm}$) correctly shown	1	3	
(c)	particles either side of a node are moving in opposite directions so at one moment they increase the pressure (at a node) and the next moment they reduce the pressure	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	
(d)	time for S-waves $=3300 / 2.7=1220$ s or $1.22 \times 10^{3} \mathrm{~s}$ time for P -waves $=3300 / 4.3=770 \mathrm{~s}$ time interval $=1200-770=450$ (s)	1 1	2	8

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U - October/November 2013	9792	02

8 (a)	$\begin{aligned} & \text { (wavelength }=) h / p=h / m v \\ & =6.63 \times 10^{-34} /\left(9.11 \times 10^{-31} \times 3.0 \times 10^{7}\right)=2.43 \times 10^{-11}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	
(b)	idea of a diffraction pattern (on screen) circular pattern	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	4

Section A total 75

Section B [25 marks]

Q	Marking Points	Marks	
$9 \quad$ (a) (i)	wavelength $=505$ (seen) or $\mathrm{f}=\mathrm{c} / \lambda$ or $5.05 \times 10^{-7} \mathrm{~m}$ or $4.30 \times 10^{-7} \mathrm{~m}$ (i.e. conversion from nm to metres) $3.00 \times 10^{8} / 5.05 \times 10^{-7}$ $5.94 \times 10^{14}(\mathrm{~Hz})$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
(ii)	$(\mathrm{E}=) \text { hf or } 6.63 \times 10^{-34} \times 5.94 \times 10^{14}$ $3.94 \times 10^{-19}(\mathrm{~J}) \quad \text { ecf from (a)(i) }$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(iii)	$\begin{aligned} & 3.94 \times 10^{-19} / 1.60 \times 10^{-19} \\ & 2.46(\mathrm{eV}) \quad \text { ecf from (a)(ii) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	7
(b) (i)	Below this voltage not enough energy is supplied to an electron to promote it to the appropriate energy level	1	
(ii)	For the blue LED the energy of the photons / band gap is greater and so more energy (pd is energy/unit charge) is required or vice versa for red LED	1	2
(c) (i) 1	$\begin{aligned} & v=c / n \text { or } 3.00 \times 10^{8} / 4.24 \\ & 7.08 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(i)2	$\begin{aligned} & n=1 / \sin c \text { or } c=\sin ^{-1}(1 / n) \text { or } \sin c=1 / 4.24 \\ & 13.6^{\circ} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(ii)	reflection enables more light to emerge in the forward direction total internal reflection (TIR) can be used to do this or the critical angle can be chosen to get the maximum emission where it is required or it increases the critical angle	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	6
(d) (i)	$\begin{aligned} & (\mathrm{P}=) \text { IV or } 0.44 \times 4.50 \\ & 1.98(\mathrm{~W}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(ii)	$(3.35 / 1.98)=1.69\left(\mathrm{~mW}^{-1}\right) \quad$ ecf from (d)(i)	1	3

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - October/November 2013	9792	02

(e)	domestic: use as indicator lights small domestic lighting efficient/low energy consumption/powered by dynamo (wind-up) white light source torches (large screen) TV/monitors no vacuum tube/thin/bright Christmas tree lights etc. low voltage device powered by batteries/portable/used outside remote control IR LED used Industrial:	
traffic lights motorway information directional display (e.g. ATM) light emitted in one direction cheap lightweight used in vehicles d.c. device UV LED used in sanitation/sterilisation used in medicine/for dermatitis technological: light source for fibre optic cables/cable TV/phones no warming up/immediate illumination HDTV headlamps/fog lamps etc. any sensible future use reason for sensible future use Maximum 7 marks	Section B total 25	

Paper total 100

