MARK SCHEME for the May/June 2013 series

9794 MATHEMATICS

9794/01

Paper 1 (Pure Mathematics 1), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Paç		ge 2 Mark Scheme	Syllabus	Paper	
		Pre-U – May/June 2013	9794	0	1
1		State midpoint as $x = 6$, $y = 4$	B1		
		Attempt Pythagoras on 8 and 6	M1		
		Obtain 10	A1		[3]
2		State 10	B1		
		State $(-2)^3$	B1		
		Attempt product of binomial coefficient and power of 2	M1		
		Obtain –80	A1		[4]
		Or Attempted expansion of 3 brackets	[M1		
		$Obtain - 32x^3 - 48x^3$	A1		
		Obtain –80	A1]		
3	(i)	Attempt correct cosine or sine rule	M1	[3]	
		Obtain unsimplified form $PQ^2 = 7^2 + 7^2 - 2(7)(7)\cos 1.7$	A1		
		Obtain 10.5	A1		
	(ii)	Use 7θ	M1	[2]	
		Obtain 22.4	A1		[5]
4		Introduce logarithms	M1		
		Use power law	M1		
		$Obtain 5x \ln 2 = \ln 15$	A1		
		Obtain $x = 0.781$	A1		[4]
5	(i)	Attempt integration	M1*	[3]	
		Obtain at least $x^3 - 2x^2 + 8x$	A1		
		$Obtain \ x^3 - 2x^2 + 8x + c$	B1*		
	(ii)	Attempt use of limits	M1	[2]	[5]
		Obtain 26	A1		

Page		je 3	Mark Scheme	Syllabus		Paper	
		Pre-U – May/June 2013 9794		9794			1
6	(i)		s' curves shown in the range -1 shown on y-axis and x values for at least stationary points	s indicated	B1 B1		
		on fully	correct curve. (For the second B1, curves must show the sta 2π clearly.)			[2]	
	(ii)	State 'st	retch'		B1		
		parallel	to the <i>x</i> -axis		B1		
		scale fac	ctor 0.5		B1	[3]	
7	(i)	Attempt	use of Pythagoras		M1		
		Obtain	z = 29		A1	[2]	
	(ii)	Attempt	fully correct argument for $\arg z$ using tan ratio or equivalent	ıt.	M1		
		State 13	4° or 2.33 rad		A1	[2]	
	(iii)	Show or	imply multiplication by conjugate or equivalent method		M1		
		Obtain (-20 - 21i)/841		A1	[2]	[6]
8	(i)	Attempt	f(1) and f(2)		M1		
			-1 and 5 and conclude correctly including reference to a roo	t	A1	[2]	
	(ii)	State de	rivative = $3x^2 - 1$		B1		
		Use com	rect Newton-Raphson formula		M1*		
			5 and 1.3478 (or 1.348) 478, 1.3252, 1.3247, (1.3247)		A1		
		State 1.3	325		A1	[4]	[6]

		e 4	Mark Scheme Syllabu	5		ber
			Pre-U – May/June 2013 9794	0		1
9	(i)	State or	imply use of $R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$	M1		
		Obtain <i>I</i>	$R\cos\alpha = 1$ and $R\sin\alpha = \sqrt{3}$	A1		
		Obtain <i>a</i>	$a = \frac{\pi}{3}$ or 60°	A1		
		Obtain <i>I</i>	R = 2	A1	[4]	
	(ii)	State 2si	$n(\theta + \pi/3) = 0.8$	B1		
		Attempt	to solve (correct order of operations)	M1		
		Obtain e	ither: -0.636 or 1.68	A1		
		Obtain 1	.68 only	A1	[4]	[8]
10		Attempt $5 + 4\lambda =$	to equate at least two of $0 - 2u$	M1		
		11+3λ =	$=4+\mu$			
			$-4+4\mu$			
		Obtain a	t least two correct	A1		
		Attempt	to solve two eqns	M1*		
		Obtain λ	$\mu = -1$ $\mu = 4$	A1		
		Attempt	to substitute <i>their</i> value for λ or μ	M1*		
		Obtain (1, 8, 12)	A1		[6]
11	(i)	Obtain c	$\frac{1}{2}\frac{1}{2}\frac{1}{2}\theta$	B1		
		Obtain c	$dx/d\theta = 2\cos\theta$	B1		
		Use dy/c	$dx = (dy/d\theta)/(d\theta/dx)$ and use identity for sin2 θ	M1		
		Obtain -	$-2\sin\theta$ NIS	A1	[4]	
	(ii)	Obtain n	n = -2, x = 2 and y = -1	B1		
		Attempt	equation of line	M1		
		Obtain y	y = 3 - 2x	A1	[3]	
((iii)	Attempt	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ or equivalent	M1		
		Attempt	to eliminate θ	M1		
		Obtain y	$y = 1 - x^2/2$	A1	[3]	[10]

Pag	ge 5	Mark Scheme	Syllabus	Paper	
		Pre-U – May/June 2013	9794	01	
12 (i)	Attempt	to form LCM and cross multiply	M1		
	Attempt	to expand bracket and simplify	M1		
	Obtain g	given answer	A1	[3]	
(ii)	State $\frac{1}{h} \left(\frac{1}{(x+1)} \right)$	$\frac{1}{h^2} - \frac{1}{x^2}$ or equivalent form	M1		
	Attempt	to substitute the AG and obtain $\frac{-2x-h}{x^2(x+h)^2}$	M1		
	Obtain -	$-2x^{-3}$ with full and accurate notation in the proof throughout	. A1	[3]	[6]
13	Identify	a correct factor	B1		
	Attempt	division or coefficient matching for their factor	M1		
	Obtain a	quadratic quotient	M1		
	Obtain ($(x+3)(x-1)^2$	A1		
	State part $\frac{A}{x+3}$ +	rtial fractions of form $\frac{B}{x-1} + \frac{C}{(x-1)^2}$	B1		
		to remove fractions from partial fractions in the form above see below)	e or as in M1*		
	Attempt	to find <i>A</i> , <i>B</i> and <i>C</i>	M1*		
	Obtain a	any two of $A = 1$, $B = 1$ and $C = 1$	A1*		
	Obtain a	all three values	A1*		
	Obtain A	$4 \ln (x+3)$	B1		
	$B \ln (x -$	- 1)	B1		
	$-\frac{c}{x-1}$		B1		
	SR parti	al fractions may also be of the form $\frac{A}{x+3} + \frac{Bx+c}{(x-1)^2}$			[12]