CAMBRIDGE INTERNATIONAL EXAMINATIONS

Pre-U Certificate

MARK SCHEME for the May/June 2013 series

9794 MATHEMATICS

9794/02

Paper 2 (Pure Mathematics 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9794	02

1	(i)	$\mathbf{u} + \mathbf{v} = \begin{pmatrix} 1 \\ 8 \end{pmatrix}, \mathbf{u} - \mathbf{v} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$	B1 B1	[2]	
	(ii)	$ \mathbf{u} + \mathbf{v} = \sqrt{1 + 64} = \sqrt{65}$ $ \mathbf{u} - \mathbf{v} = \sqrt{49 + 16} = \sqrt{65}$	M1 A1	[2]	[4]
2	(i)	Any correct complete method 43	M1 A1	[2]	
	(ii)	$r = \frac{1}{3}$	B1		
		$r = \frac{1}{3}$ $S_{\infty} = \frac{a}{1 - r}$	M1		
		$=\frac{162}{1-\frac{1}{3}}=243$	A1	[3]	
	(iii)	All four of -1 , 3, -1 , 3 It is periodic o.e.	B1 B1	[2]	[7]
3	(i)	$x^{2} + 2x - 3 = (x + 1)^{2} - 4$ $(a = 1, b = -4)$	B1 B1	[2]	
	(ii)	u-shaped parabola Vertex at $(-1, -4)$ Let $x = 0$ and solve Intersecting: x -axis at -3 and 1 , y-axis at -3	B1 B1 ft M1 A1 B1	[5]	[7]
4	(i)	Substitute $z = -1$ and convincingly obtain 0	B1	[1]	
	(ii)	3 term quadratic $z^3 + 5z^2 + 9z + 5 = (z + 1)(z^2 + 4z + 5) = 0$ Solve $z^2 + 4z + 5 = 0$ Obtain $-2 + i$ and $-2 - i$	M1 A1 M1 A1	[4]	
	(iii)	Argand diagram showing their three roots	B1 ft	[5]	[10]

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9794	02

_	(2)	Differentiate invalidate value and dust mile	M1		
5	(i)	Differentiate implicitly, using product rule dv	M1		
		$y + x \frac{dy}{dx}$	A1		
		final term $2y \frac{dy}{dx}$	B1		
		complete $2x + y + x \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$, and manipulate to given answer	A1	[4]	
	(ii)	Substitute $x = 2$, $y = 3$ $\frac{dy}{dx} = -\frac{7}{8}$	M1		
		Gradient of normal is $\frac{8}{7}$	A1		
		Line through (2, 3) with <i>their m</i> .	M1		
				r 43	101
		Obtain 8x - 7y + 5 = 0	A1	[4]	[8]
6	(i)	Obtain $\log N = \log a + t \log b$ o.e. w.w.w. Compare with $y = mx + c$	M1 A1	[2]	
	(ii)	t 1 2 3 4 5 6 7 8 log N 0.9 1 1.2 1.38 1.52 1.6 1.67 1.84	M1 A1		
		Plot points (condone 1 error) Line of best fit Obtain a between 5.5 and 6.5 b between 1.32 and 1,42 SC M1A1 for a and b from data in the table only if no graph drawn	B1 B1 B1 B1	[6]	
	(iii)	Follow through <i>their a</i> and <i>b</i> given answers in these ranges			
		Model 2008 50–95 2020 1400–5500	B1 ft B1 ft	[2]	
	(iv)	Use logs (or <i>their</i> expression from part (i)), or evaluate enough terms to get $N > 500$ Solve for t and interpret as a year $2013-2017$	M1 M1 A1 ft	[3]	
	(v)	 Any reasonable observation about the <i>model</i>, e.g: It predicts unrestricted growth which is unrealistic. It predicts that the growth rate is not constant, but increases with population size, which is realistic. 	B1	[1]	
		 Extrapolation is not valid when breeding conditions may change, so not suitable. 			[14]

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9794	02

7	(i)	Attempt product rule	M1		
		Obtain $2xe^{-x}$	A 1		
		Obtain $\pm x^2 e^{-x}$	M1		
		Obtain $xe^{-x}(2-x)$ AG	A 1	[4]	
	(**)		3.61		
	(ii)	Set equal to zero and solve	M1		
		At least two correct x or y values $(0,0)$ $(0,0)$ $(0,0)$ $(0,0)$ $(0,0)$	A1		
		$(0,0)$ and $(2,4e^{-2})$	A 1	[3]	[7]
8	(i)	Since most terms cancel, $(1 + 30^{-1})$	M1		
		$=1\frac{1}{30}$	A1	[2]	
		30			
	(ii)	$S = -1 + 2 - 3 + 4 - \dots -99 + 100$	M1		
	()	$= 50 \times 1 = 50$	A1	[2]	[4]
				[-]	[-]
9	(i)	$\csc 2x = \frac{1}{\sin 2x}, \cot 2x = \frac{\cos 2x}{\sin 2x}$	B1		
		OR $\frac{1}{\tan 2x}$ seen			
		$\csc 2x - \cot 2x = \frac{1 - \cos 2x}{\sin 2x}$			
		$=\frac{1-(1-2\sin^2 x)}{1-(1-2\sin^2 x)}$	M1		
		$=\frac{1}{2\sin x \cos x}$	M1		
		$=$ $2\sin^2 x$	A1		
		$=\frac{1}{2\sin x\cos x}$	711		
		$=\frac{\sin x}{\cos x}=\tan x$	A 1		
		$-\frac{1}{\cos x} - \tan x$			
		$\tan\frac{3}{8}\pi = \csc\frac{3}{4}\pi - \cot\frac{3}{4}\pi = 1 + \sqrt{2}$	B1	[6]	

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9794	02

(ii)	$\int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} (\csc 2x - \cot 2x)^2 dx = \int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} \tan^2 x dx$	M1		
	$ \int_{\frac{1}{4}\pi}^{\frac{1}{4}\pi} \sec^2 x \pm 1 dx $ $ = \int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} \sec^2 x \pm 1 dx $	A1		
	$= \int_{\frac{1}{4}\pi} \sec^{2} x \pm i\alpha$ $= \left[\tan x - x\right]_{\frac{1}{4}\pi}^{\frac{3}{8}\pi}$	M1 A1		
	$= \lim_{n \to \infty} x - x \int_{\frac{1}{4}\pi}^{1}$ $= \sqrt{2} - \frac{1}{8}\pi$	M1 A1	[6]	
	o		. ,	
	Alternate solution: $\int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} (\csc 2x - \cot 2x)^2 dx$			
	4			
	$= \int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} \csc^2 2x - 2\csc 2x \cot 2x + \cot^2 2x dx$	M1		
	$= \int_{\frac{1}{4}\pi}^{\frac{3}{8}\pi} 2\csc^2 2x - 2\csc 2x \cot 2x - 1 dx$	A1		
	$= \left[-\cot 2x + \csc 2x - x \right]_{\frac{1}{4}\pi}^{\frac{3}{8}\pi}$	M1 A1		
	$=\sqrt{2}-\frac{1}{8}\pi$	M1 A1	[6]	[12]
10 (i)	$\frac{\mathrm{d}V}{\mathrm{d}t} \propto \sqrt{h}$	M1		
	Since the tank is a prism $V \propto h$ so			
	$\frac{\mathrm{d}V}{\mathrm{d}t} = a\sqrt{V} \text{where } a \text{ is a constant}$	A1	[2]	
(ii)	Separating variables			
	$\int \frac{1}{\sqrt{V}} \mathrm{d}v = \int a \mathrm{d}t$	M1		
	$2\sqrt{V} = at \ (+c)$	M1 A1		
	Use $t = 0$, $V = V_0$ to obtain $c = 2\sqrt{V_0}$	B1		
	and $t = 1$, $V = \frac{1}{2}V_0$ in an equation involving a and c (or using definite integrals) to	M1		
	find a in terms of V_0 only			
	$a = 2\sqrt{V_0} \left(\frac{1}{\sqrt{2}} - 1 \right)$	A1		
	convincingly substitute and rearrange to get $\left(\begin{pmatrix} 1 & 1 \end{pmatrix} \right)^2$			
	$V = V_0 \left(\left(\frac{1}{\sqrt{2}} - 1 \right) t + 1 \right)^2$	A1	[7]	

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9794	02

(iii)	$V = 0$ implies $t = \frac{-1}{\frac{1}{-1} - 1} = 2 + \sqrt{2} = 3.41$	M1			
	$\sqrt{2}$ 3.41 hours is 3 hours 24 mins and 51 seconds Condone verification only if $5.16 \times 10^{-6} V_0$ seen	A1	[2]	[11]	