CAMBRIDGE INTERNATIONAL EXAMINATIONS

Pre-U Certificate

MARK SCHEME for the May/June 2014 series

9794 MATHEMATICS

9794/01

Paper 1 (Pure Mathematics 1), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	01

1	(i)	Method to compare coefficients or complete the square Obtain $a=4$ Obtain $b=-6$	M1 A1 A1	[3]
	(ii)	State minimum = -6 or $y = -6$ State $x = 4$	B1 B1	[2]
		SR Accept $(4, -6)$ SR If differentiation is used to find $x = 4$ award B1		
2		Correct and labelled tan curve with asymptotes clearly intended or shown. Scale required on <i>x</i> -axis	B1	
		Correct arc tan curve $tor^{-1}(\pi)$ must be approx. Let asymptote shown. Scale required on yeavis	B1	
		$\tan^{-1}(\frac{\pi}{2})$ must be approx. 1 or asymptote shown. Scale required on y-axis		
		и у		
		11/2		
		-1/2 1/2		
		-1/2		
		State reflection in line $y = x$	B1	[3]
3		METHOD 1 $x < 2$ seen	B1	
		2x - 1 < 3 AND - (2x - 1) < 3 seen Obtain $-1 < x < 2$	M1 A1	[3]
		METHOD 2		
		$(2x-1)^2 < 3^2$ seen Expand and obtain a 3 term quadratic $(x^2 - x - 2 < 0)$	B1 M1	
	(1)	Obtain $-1 < x < 2$	A1	
4	(i)	Attempt to move the graph sideways and up. Obtain fully correct figure moved 2 units to the left and 1 up.	M1 A1	[2]
	(ii)	Attempt to scale the figure vertically and clearly reflect in <i>x</i> -axis. Obtain fully correct figure with <i>y</i> -coordinates halved and reflected in the <i>x</i> -axis.	M1 A1	[2]
		NB Scales are required on both axes		

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	01

5	State $3 - i$ Attempt a complete method for determining p and q .	B1 M1	
	Obtain $p = -6$ Obtain $q = 10$	A1 A1	[4]
6 (i)	Show $7 \times 2 - 10 - 2^2 = 0$ OR solve $x^2 - 7x + 10 = 0$ to obtain $x = 2$ at least	B1	[1]
(ii)	Obtain $\frac{dy}{dx} = 7 - 2x$	B1	
	Obtain $y = 2$ and $\frac{dy}{dx} = 1$ at $x = 3$	B1	
	Attempt equation of straight line	M1	
	Obtain $y = x - 1$ Substitute $x = 1$ and obtain $y = 0$	A1 A1	[5]
(iii)	Obtain area of triangle = 2 Attempt integration	B1 M1	
	Obtain $\left[\frac{7x^2}{2} - 10x - \frac{1}{3}x^3\right]$	A1	
	Attempt to substitute limits of 2 and 3.	M1	
	Obtain $\frac{7}{6}$	A1	
	Attempt subtraction from area of triangle	M1	
	Obtain $\frac{5}{6}$ with no decimals seen	A1	[7]
7	Obtain any equiv form of correct derivative $\frac{-2}{x^3}$ – 0.018	B1	
	Attempt use of correct formula Use $x_0 = 2$ and continue at least as far as x_1	M1 dep M	11
	State 2.47 SR 2.47 may be awarded B1 for any method or no method seen	A1	[4]

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	01

	(1)	dy dy d <i>t</i>	2.61	
8	(i)	Attempt $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$	M1	
		Obtain $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^t - 5}{\mathrm{e}^t - 2}$	A1	[2]
	(ii)	Equate their derivative to 3 and attempt to solve Obtain $e^t = 0.5$ Attempt ln on both sides and use power law Obtain $t = -\ln 2$ AG	M1 A1 M1 A1	[4]
		OR		
		Substitute $t = -\ln 2$ into $\frac{dy}{dx} = \frac{e^t - 5}{e^t - 2}$	M1	
		Use power log law to show or imply $\frac{dy}{dx} = \frac{e^{\ln \frac{1}{2}} - 5}{e^{\ln \frac{1}{2}} - 2}$	M1	
		Obtain $\frac{dy}{dx} = \frac{\frac{1}{2} - 5}{\frac{1}{2} - 2}$	A1	
		Obtain 3	A1	
9	(i)	Attempt to use an expression for r, e.g. $\frac{6}{x} = \frac{x+5}{6}$ or $\frac{36}{x^2} = \frac{x+5}{x}$	M1	
		Obtain correctly $x^2 + 5x - 36 = 0$ AG	A1	
		Obtain $x = 4$ or -9	B1	[3]
	(ii)	Obtain $r = \frac{3}{2}$	В1	
		Obtain $r = \frac{-2}{3}$ and only these	В1	[2]
	(iii)	State $r = -\frac{2}{3}$ or imply this by considering only this value of r	B1	
		Attempt to solve $ar^2 = 6$ or $ar = -9$ Obtain $a = 13.5$	M1 A1	
		Use correct sum to infinity formula and obtain 8.1	B1	[4]
		SR both r offered with no choice M1 only		

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	01

10 (a)	Attempt integration to obtain an integral in $\ln (f(x))$	M1	
	Substitute limits to obtain correctly $\frac{1}{2}$ (1n9 – 1n5)	A1	
	Show clearly the use of at least one log law	M1	
	Obtain $\ln \frac{3}{\sqrt{5}}$ www AG	A1	[4]
(b)	Attempt integration by parts with $u = x$ d $u = 1$ and d $v = (x - 2)^{0.5}$ and $v = \frac{2}{3}(x - 2)^{\frac{3}{2}}$	M1	
	Obtain $kx(x-2)^{\frac{3}{2}} - m \int f(x) dx$	M1	
	Obtain $kg(x) - m \int f(x-2)^{\frac{3}{2}} dx$	M1	
	Obtain $\frac{2}{3}x(x-2)^{\frac{3}{2}} - \frac{4}{15}(x-2)^{\frac{5}{2}} + c$	A1	[4]
	OR		
	Attempt reverse substitution with $u = x - 2$ d $u = dx$ and $\sqrt{x - 2} = \sqrt{u}$	M1	
	Obtain $\int (u \pm 2)u^{0.5} du$	M1	
	Obtain $ku^{\frac{5}{2}} + mu^{\frac{3}{2}}$	M1	
	Obtain $\frac{2}{5}(x-2)^{\frac{5}{2}} + \frac{4}{3}(x-2)^{\frac{3}{2}} + c$	A1	

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	01

11	(i)	Attempt use of the form $\frac{A}{v} + \frac{B}{1-v}$ and remove fractions	M1	
		Obtain $A = 2$ Obtain $B = 2$	A1 A1	[3]
	(ii)	Attempt to separate variables and use result from (i)	M1	
		Attempt integration of both sides Obtain $2 \ln y - 2 \ln 1 - y = x + C$ aef Attempt use of at least one log law correctly State or imply $1 \ln \left(\frac{y^2}{(1-y)^2} \right) = x + C$ and obtain convincingly	M1 A1 M1	
		$\frac{y^2}{\left(1-y\right)^2} = Ae^x \text{ AG}$	A1	[5]
	(iii)	Substitute $(0, 2)$ and obtain $A = 4$	B1	
		Select the correct root of -2 and attempt to make y the subject	M1	
		i.e. $\frac{y}{(1-y)} = -2e^{\frac{x}{2}}$		
		Obtain $y = \frac{2e^{\frac{x}{2}}}{2e^{\frac{x}{2}} - 1}$ or equiv simplified form.	A1	[3]

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	01

12	(i)	Attempt to use $\tan 4x = \tan 2(2x)$	M1
		Obtain $\tan 4x = \frac{2 \tan 2x}{1 - \tan^2(2x)}$ or $\frac{\tan 2x + \tan 2x}{1 - \tan^2(2x)}$	A1
		Attempt to substitute for $\tan 2x$	M1*
		Obtain $\frac{\frac{2(2\tan x)}{1-\tan^2 x}}{1-\left(\frac{2\tan x}{1-\tan^2 x}\right)^2}$	dep A1
		Correctly form a single term in the denominator by removing the 1	dep M1
		Obtain $\frac{4 \tan x \left(1 - \tan^2 x\right)}{1 - 6 \tan^2 x + \tan^4 x}$ AG.	
		Stages in the argument must be consistent and clearly presented for A1.	A1 [6]
	(ii)	State or imply that the root gives $\tan 4x = 1$	B1*
		Attempt to write the equation in the same structure as the identity	
		$\frac{4\tan x\left(1-\tan^2 x\right)}{1-6\tan^2 x+\tan^4 x}$	M1 dep
		Obtain $p = 4$ Convincing and clear argument with all stages shown including the	A1 dep
		statement that $\tan\left(\frac{\pi}{4}\right) = 1$	B1 dep
		Evaluation using decimals 0/4	[4]