MARK SCHEME for the May/June 2014 series

9794 MATHEMATICS

9794/02

Paper 2 (Pure Mathematics 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Pag		ge 2	Mark Scheme	Syllabus	Paper					
			Pre-U – May/June 2	014			9794	02		
1	(i)		$^{2} + 7^{2} - 2 \times 10 \times 7 \times \cos(100)$ 164 = 13.2 to 3 sf	M1 A1	[2]	Must	Must be correct formula attempted Must be correct formula attempted Allow equiv methods as long as valid use of trig throughout			
	(ii)	Area $= 0$	$0.5 \times 10 \times 7 \times \sin(100)$	M1		Allow				
		= 3	4.468 = 34.5 to 3 sf	A1	[2]	use o				
2	(i)	$\Delta = b^2 - k^2 - $	4 <i>ac</i> 16	M1 A1	[2]	Simp	lify to this			
	(ii)	$k^{2} - 16 \cdot 0$ $k \cdot 4$ $k \cdot -4$		M1 A1 A1	[3]	Must be > seen, or implied by answer Allow incorrect answer from (i), as long as $b^2 - 4ac$ attempted A1A0 for $-4 > k > 4$ or $k > \pm 4$ Allow BOD on 'and' not 'or' k > 4 gets A1A1 Attempting to solve f'(x) > 0 can get				
3		If $f(x) = x$ $\frac{f(x+h)}{h}$	$f(x+h) = (x+h)^{3}$ $= 3x^{2} + 3xh^{2} + h^{3} \text{ seen anywhere}$ $= (x+h)^{3} - \frac{f(x)}{h} = \frac{(x+h)^{3} - x^{3}}{h}$ $= 3x^{2} + 3xh + h^{2}$ $= \lim_{h \to 0} (3x^{2} + 3xh + h^{2}) = 3x^{2}$	B1 M1 M1 A1	[4]	Or un Could Just n or f(x Atter divise	1A1 as above asimplified equiv d expand $(x - h)^3$ recognise that $f(x - h) = (x - h)^3$ npt correct procession by h	$(x+h) = (x+h)^3,$		
			$\int_{h \to 0} -\min(3x + 3xh + h) = 3x$	AI	[4]	Allov	w $h = 0$ for $h \to 0$ w f'(x) $\to 3x^2$ to see f'(x) or $\frac{dy}{dx}$	within proof		

Page 3			Mark Scheme			Syllabus Paper				
			Pre-U – May/June 2	Pre-U – May/June 2014						
		[1				
4	(i)	$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$	$\overrightarrow{CB} = \begin{pmatrix} -1\\0\\2 \end{pmatrix}$	B1		Any two relevant vectors Allow vectors of inconsistent				
		$(\pm)9 = \sqrt{3}$	$35\sqrt{5}\cos A\hat{B}C$	M1		directions e.g. <i>AB</i> and <i>BC</i> Attempt scalar product – allow inconsistent directions Correct expression involving cos <i>ABC</i> – not necessarily with cos <i>ABC</i> as the subject				
		$\cos A\hat{B}C$	$=\frac{9}{\sqrt{35}\sqrt{5}}$	A1						
		so $A\hat{B}C =$	$47.13 = 47.1^{\circ}$ to 1 dp	A1	[4]	CŴO				
				B1 M1 A1		Using cosine rule Three correct vectors soi Attempt correct cosine rule Correct expression involving cos <i>ABC</i> CWO so A0 if correct surd from incorrect vector				
				A1		Obtain 47.1°				
	(ii)	$k \overrightarrow{AB} = k$	$ \begin{bmatrix} 1\\3\\5 \end{bmatrix} = \overrightarrow{CD} = \begin{pmatrix} -5\\a-2\\b-3 \end{pmatrix} $	M1		Attempt to find at least one of a and b , by considering at least two components of parallel vectors, including attempt at k				
			a - 2 so $a = -13b - 3$ so $b = -22$	A1 A1	[3]					
5	(i)	68		B1	[1]					
	(ii)	$S_{15} = 7.5$ = 810	$\times (2 \times 5 + 14 \times 7)$	M1 A1	[2]	Attempting to use correct formula				
	(iii)	New serie	es with $a = 11$ and $d = 14$	M1		Either identified explicitly, used in formula or just listing new terms				
		$S_{15} = 7.5$ = 163	$ \times (2 \times 11 + 14 \times 14) $ 5	M1 A1	[3]	(could be <i>a</i> & <i>l</i>)				
		OR		OR						
		$\sum_{1}^{15} 2x_n +$	$1 = 2\sum_{1}^{15} x_n + 15$	M1		Allow M1M0 for $\left(2\sum_{1}^{15} x_n\right) + 1$				
		$= 2 \times 810$ $= 1635$	+ 15	M1 A1						

Pa	ige 4	Mark Schem	Syllabus	Paper				
		Pre-U – May/June	Pre-U – May/June 2014					
6	$\sin\theta = \frac{\sqrt{7}}{4} \qquad \qquad$				$\sin \theta$	Attempt to find numerical value of $\sin \theta$ – from right angled triangle or identities		
	$\sin 2\theta = 2$	$2\sin\theta\cos\theta$	M1		Must be correct triangle/identity Use $\sin 2\theta = 2 \sin \theta \cos \theta$ with numerical values M0 if using numerical value for θ not $\sin \theta$ M0M1 is possible (e.g. assuming 3, 4, 5Δ) Obtain correct surd aef (must be single fraction)			
		$2 \times \frac{\sqrt{7}}{4} \times \frac{3}{4} = \frac{3\sqrt{7}}{8}$	A1					
	$\cot \theta = \frac{c}{s}$	$\frac{\cos\theta}{\sin\theta} = \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}} = \frac{3}{\sqrt{7}}$	M1		value M0 if tan θ	npt to find cot <i>θ</i> , u s f using numerical d follow first M0	-	
			A1	[5]		in correct surd aef	f (must be single	
7 (i)	$(z^2 + 4)(z$	² – 1)	B2	[2]	B2 Allov	ng $a = 4, b = -1$ (o v B1 for $(z^2 - 4)(z$ v B1 (BOD) for (z	$(2^{2}+1)$	
(ii)			√B 1		At least 2 correct points, following their <i>a</i> & <i>b</i>			
		2i -1 -2i	√B1	[2]	All 4 & b a negat	correct points, fo as long as one pos tive so B1B0 if locus of	itive and one	
						v just 2 on axis as lution, or axis is la	•	

Page 5		Mark Scheme	Syllabus	Paper				
		Pre-U – May/June 20	Pre-U – May/June 2014					
			1					
8	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + \frac{1}{2}$	$-\frac{1}{x}$	M1 A1			mpt integration – one correct term y correct		
	solve to c only one at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ as x , 0 ca	M1 A1 A1	[6]	Obtai Obtai select $\pm \frac{1}{\sqrt{2}}$ Exact Expla root, \pm	t to solve tive root ry point having bot only from y, else A0 ere is only one solution will get			
9 (i) (ii)		Attempt iteration $P_3 = 687$ Attempt iteration $P_3 = 927$ s to 693	B1	[4]	Allov At lea Allov Identi expla increa Identi	ast twice v decimal values, ast twice v decimal values, ify Model 1, with nation e.g. decrea ase ify that it converged d justify that $P_t \approx$	or 926 minimal using rate of ges to 693 oe	
(iii)	appears to 561, 980	o settle down to periodic (values 926, and 429)	B1	[1]		as periodic oe – r ues, or refer to per		

Page 6		Mark Scheme	Syllabus	Paper						
		Pre-U – May/June	2014			9794	02			
	1				1					
10 (i)		4 - 10 + 28 - 15 hence $x = 1$ is a root	M1 A1	[2]	equiv Show	Substitute $x = 1$ into the function, or equivalent process to find remainder Show clearly that it equals zero and conclude, with correct terminology				
(ii)	$\mathbf{f}(x) = (x - \mathbf{f}(x))$	$(x^3 + x^2 - 5x + 3) + 0$	M1 A1		factor	Attempt complete division or factorisation Quotient correct at least as far as x^2				
			A1 B1	[4]	term Quotient $x^3 + x^2 - 5x + 3$ soi Remainder 0 (allow 'no remainder') soi					
(iii)	$\mathbf{f}(x) = (x - \mathbf{f}(x))$	$(x-5)(x-1)(x^2+2x-3)$	M1		Attempt to write $f(x)$ as product of two linear factors and one quadratic Could go via $(x-1)(x^3 - 3x^2 - 13x + 15)$ Obtain correct linear and quadratic					
	= (x -	$(x-5)(x-1)^2(x+3)$	A1		factors soi Obtain fully correct factorisation					
		towing: a positive quartic ng with the x-axis at -3 and 5	M1		Positive quartic, with 3 turning points Allow $y \le 0$ only					
		mum on the <i>x</i> -axis at 1	A1	[5]	x coo No ne Allov Need	x coords indicated, or implied by scale No need to see -15 on y-axis Allow minimum at $(0, -15)$ Need $y > 0$ as well, possibly with one arm truncated				

Page 7		Mark Scheme	Syllabus	Paper					
		Pre-U – May/June 20)14			9794	02		
			1		1				
11 (i)	$F_1'(x) =$	· .	B1						
		$\frac{\frac{1}{3}(2x^2 - 4x + 7)^{-\frac{2}{3}}(4x - 4)}{-4(x^2 - 2x) - (7 - 4x)(2x - 2)}$ $\frac{(x^2 - 2x)^2}{(x^2 - 2x)^2}$	M1 A1 M1		Must Atten mudd	npt chain rule include any necessary brackets npt quotient rule (allow sign les in numerator)			
			A1	[5]	fracti No ne	ld also differentiate partial tions need to simplify (isw if done prrectly)			
(ii)	$F_1'(1.9)$		M1		Atten	npt $F'(1.9)$ for all	three functions		
	$F_{2}^{\prime}(1.9)$ $F_{3}^{\prime}(1.9)$	= 0.340 = 50.9	B1*		conve or rej	e correct condition for vergence – could be for acceptanc ejection, but must have modulus			
	F_1 and F_1	2 converge	A1d*			ify F_1 and F_2 F'(1.9) correct for	or all 3 functions		
		nvergence is F_2 because the magnitude adient is smallest near the root. WWW	A1	[4]	ʻgrad Acce Need	Must have magnitude soi, not ju 'gradient smaller' Accept gradient closer to 0 Need $F'(1.9)$ correct for all 3 fur M1B0A0A1 is possible			
(iii)	$ e_{r+1} =0.$	$34^{r} e_{1} $	M1		Attempt to apply general statement to this question e.g. $e_2 = 0.34 \times e_1$				
	1 -1	$> 0.34^{r} e_{1} $	M1		Atten	npt to solve $P e_1 = F'(1.9)^r e_1 $			
	so $r > \frac{1}{10}$	$\frac{-10}{g0.34}$ > 21.34, so 22 iterations.	A1	[3]	Allov Could Allov 1.9 Allov F (1 Obtai index If nui corre	w index of r or r – d use a more accu w any numerical w w any $F^{*}(1.9)$ as le .9) < 1 in 21 / 22 / 23 dep and method used merical e_1 used, it	- 1 rate value for α value for e_1 , inc ong as pending on 1 must have been		

Page 8		ge 8	Mark Scheme	Syllabus	Paper				
			Pre-U – May/June 20	Pre-U – May/June 2014					
1				1					
12	(i)	$\cos t = 0$	or $\sin t = \frac{1}{2}$	M1		Atten	npt to solve at lea	st one of these	
		$\cos t = 0 \implies t = \frac{1}{2}\pi, \frac{3}{2}\pi$		A1		Obtai	t		
		y = -2 and -4 respectively		A1		Obtain both values for y SR A1 for one correct t, y pair			
		$\sin t = \frac{1}{2}$	$\Rightarrow t = \frac{1}{6}\pi, \frac{5}{6}\pi$	A1		Obtai			
		$y = -\frac{1}{4}$	for both values of <i>t</i> so	A1	[5]	Obtain $y = \frac{-1}{4}$ for both, and commute			
		there is only one point on the <i>y</i> -axis associated with both.				that same point – allow just listing			
		with ooth				(0, -2)	$\left(\frac{1}{4}\right)$ once		
						SR A	1 for one correct	t, y pair	
						max	of 4/5 if working	in degrees	
	(ii)	$\sin t < 0$	AND $\sin t > \frac{1}{3}$, but this is not possible	B1					
			hat $\sin t > 0$ AND $\sin t < \frac{1}{3}$	M1		inequ to get	tating to 0 and solution talities must be us t M1 $v \ge for >$	•	
		so $t \in (0, t)$	$\sin^{-1}\frac{1}{3}$) $\cup \left(\pi - \sin^{-1}\frac{1}{3}, \pi\right)$ oe	A1		Obtai	in at least $0 < t < s$	$\sin^{-1}(\frac{1}{3})$	
		Ň	-/ 、 、 、 ,				$v \ 0 < t < 0.34$ $v \ge \text{ for } >$	-	
				A1	[4]		$v \ge 101 > v 0 < t < 0.34, 2.8$	0 < <i>t</i> < 3.14	
						work only	ing in degrees car	n get M1A1	