CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

9794 MATHEMATICS

9794/01
Paper 01 (Pure Mathematics 1), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	9794	01

1	Use factorisation, the quadratic formula or a graph to locate zeros. -3 and 4 or $(x+3)(x-4)$ seen Obtain $-3<x<4$.	M1 A1 A1 [3]
2	Obtain correctly an equation in a single variable: $(10-2 y)^{2}+2 y^{2}=36$ Obtain $3 y^{2}-20 y+32(=0)$ aef or equivalent in x Solve their 3 term quadratic $=0$ Obtain any two values from $(2,4)$ and $\left(\frac{14}{3}, \frac{8}{3}\right)$ Obtain $(2,4)$ and $\left(\frac{14}{3}, \frac{8}{3}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { depM1 } \\ \text { A1 } \\ \text { A1 } \\ \quad[5] \end{gathered}$
3	Substitute into correct sine rule $\left(\frac{x}{\sin 28}=\frac{2 x-1}{\sin 39}\right)$ Simplify to obtain a value for x Obtain x rounding to 1.52 (1.51626967) (exact answer gets A0)	B1 M1 A1 [3]
$4 \quad$ (i) (ii)	State or imply $\ln P=\ln a+b t$ State intercept $=\ln a$ State gradient $=b$ Obtain $b=2.5$ Attempt to solve $\ln a=2$ only Obtain $a=\mathrm{e}^{2}$ or 7.39	B1 B1 B1 [3] B1 M1 A1 [3]
5 (i) (ii) (iii)	Obtain fully correct $(x-3)^{2}-9+(y-2)^{2}-4=12$ Obtain $(x-3)^{2}+(y-2)^{2}=25$ Obtain $r=5$ State gradient $=\frac{3}{4}\left(=\frac{2-(-1)}{3-(-1)}=\frac{5-(-1)}{7-(-1)}\right)$ Obtain equation of straight line $(y-q)=$ their $m(x-p)$ where $(p, q)=(-1,-1),(3,2)$ or $(7,5)$ only Obtain $1=3 x-4 y$ Calculate $\frac{2-6}{3-0}$ SR A diagram used to justify $\frac{-4}{3}$ B0B1B1. Obtain gradient $=\frac{-4}{3}$ Clearly state $\frac{-4}{3} \times \frac{3}{4}=-1$ or "negative reciprocal"	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	$\mathbf{9 7 9 4}$	01

9	Use the product rule on given $\mathrm{f}(x)$ or $x^{2} \mathrm{e}^{-x}$ and obtain a two term expression Obtain $2 x \mathrm{e}^{-x}$ Obtain $-\left(x^{2}-3\right) \mathrm{e}^{-x}$ or $-x^{2} e^{-x}$ Obtain and solve their 3 term quadratic $=0$ Obtain $x=-1,3$ Obtain $y=-2 \mathrm{e}, 6 \mathrm{e}^{-3}$ State $\pm \mathrm{e}^{-x} \neq 0$ or equivalent	M1 A1 A1 M1 A1 A1 B1 [7]
10 (i)	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \times \frac{\mathrm{d} t}{\mathrm{~d} x}$ Obtain either $\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{3}{2}(1+t)^{\frac{1}{2}}$ or $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{3}{2}(1-t)^{\frac{1}{2}}$ Obtain correct $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1.5(1+t)^{0.5}}{1.5(1-t)^{0.5}}$	M1 B1 A1
	Show multiplication of denominator and numerator by $\sqrt{1+t}$ or equivalent on correct derivative. Clearly derive $\frac{1+t}{\sqrt{1-t^{2}}}$	M1 A1 [5]
	Show $\left(1-\mathfrak{t}^{2}\right)^{-0.5}=1+\left(-\frac{1}{2}\right)\left(-t^{2}\right)+\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-t^{2}\right)^{2}$ Obtain $1+\frac{t^{2}}{2}+\frac{3 t^{4}}{8}$	M1 A1
	Show multiplication of their $1+\frac{t^{2}}{2}+\frac{3 t^{4}}{8}$ by $(1+t)$	M1
	Obtain $1+t+\frac{t^{2}}{2}$	A1
	Obtain $\frac{t^{3}}{2}+\frac{3 t^{4}}{8}$	A1
	Substitute $t=0.5$ and obtain 1.71 or better (1.7109275)	${ }^{\text {A1 }}$ [6]

11	Obtain $\mathrm{d} x=\mathrm{f}(u) \mathrm{d} u$ or equivalent Rewrite $\sqrt{x+1}$ in terms of u and substitute to obtain an integral in u Obtain unsimplified $\int \frac{2 u \mathrm{~d} u}{2\left(u^{2}-1\right) \sqrt{\left(u^{2}-1\right)+1}}$ Obtain $\int \frac{\mathrm{d} u}{u^{2}-1}$ Use partial fractions in form $\frac{A}{u+1}+\frac{B}{u-1}$ Obtain $A=\frac{-1}{2}$ and $B=\frac{1}{2}$ both correctly placed Integrate to obtain $(k \ln \|u-1\|+m \ln \|u+1\|)$ Obtain $\frac{1}{2} \ln (u-1)-\frac{1}{2} \ln (u+1)=c$ or $\frac{1}{2} \ln \left(\frac{u-1}{u+1}\right)+c$ Show correct use of at least one log law on a correct equation State or show clearly $+c=\ln A$ and obtain $\ln \left(A \sqrt{\frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}}\right)$	B1 M1 A1 A1 M1 A1 M1 A1 M1 A1 [10]

