MARK SCHEME for the May/June 2015 series

9794 MATHEMATICS

9794/02

Paper 2 (Pure Mathematics 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	Page 2	Mark Scheme			Syllabus	Paper	
		Cambridge Pre-U – May/June 2015		9494	02		
r			1	1			
1		$\frac{31}{6-\sqrt{5}} \times \frac{6+\sqrt{5}}{6+\sqrt{5}} = \frac{186+31\sqrt{5}}{31}$ $= 6+\sqrt{5}$	M1 B1 A1 [3]	Show intention to r $6 + \sqrt{5}$ Correct denominate Show given answer seen as denominate If showing that (6 M1 – attempt to ex A1 – at least 36 – 5 A1 – obtain 31	multiply top a or; at least as r correctly, in or before can $+\sqrt{5}\left(6-\sqrt{9}\right)$ pand is seen	and bottom 1 far as $36 - 1$ including 31 celling $\overline{5} = 31$ then	by 5 1
2		$\int 6x^{2} + 2dx = 2x^{3} + 2x(+c)$ 3 = 2 + 2 + c so c = -1 $y = 2x^{3} + 2x - 1$	M1* A1 M1d* A1 [4]	Attempt to integrat increase in power Obtain correct integ Substitute (1, 3) to Correct equation, in	e at least one by 1 gral (allow n find c ncluding $y =$	e term – o + <i>c</i>)	
3	(i)		M1 A1 A1	Sketch V-shape gra Vertex at (2, 3), <i>y</i> - Fully correct graph	aph, vertex ir intercept at 5 for at least	any quadra $-5 \le x \le 5$	Int
	(ii)	Two <i>x</i> -values correspond to the same <i>y</i> -value	B1 [1]	Or give numerical $f(1) = 4 = f(3)$ Referring to just 'm is B0 Must be using correst $ x-2 $ B0 if additional incompany to one'	example such ultiple' or 'm ect $f(x)$, so not correct staten	n as any' x-value ot just nent, such as	es S

[Page 3	Mark Scheme		Syllabus	Paper		
		Cambridge Pre-U – May/June 2015		9494	02]	
4		$\pi \int_{-1}^{2} x^{6} dx = \pi \left[\frac{x^{7}}{7} \right]_{1}^{2}$ $= \pi \left(\frac{128}{7} - \frac{1}{7} \right) = \frac{127}{7} \pi (= 57.0 \text{ to } 3 \text{ sf})$	B1 M1 M1 A1	State or imply correction Attempt integration Attempt use of limit attempt (i.e. increase Must be correct or (M0M1 is possible Obtain $\frac{127\pi}{7}$, or 5 $\pi \frac{127}{7}$)	ect formula f n to obtain kx its in any into se in power b der and subtr) 7.0 or better	For volume o ⁷ egration by 1) action (allow	of
5	(i)	f(1.5) = 0.497494 f(2) = -0.090702	M1 A1 [2]	Attempt evaluation evaluation must be sufficient Conclude correctly Must have correct Allow rounded or t better	of f(1.5) and seen so f(1.5 – refer to sigvalues for f(1 runcated values	1 $f(2) - 5 > 0$ is not gn change of5) and $f(2)$ ues - 1sf, or	e
	(ii)	e.g., starting with $x_0 = 1.5$ $x_1 = 1.9974$ $x_2 = 1.9103$ $x_3 = 1.9429$ x = 1.93 to 2 dp	B1 M1 A1 [3]	Correct first iterate $1.5 \le x \le 2$ f(1.75) = 1.9839 Correct iteration pr Allow iteration in c Obtain 1.93 – must Must be clear conc e.g. $x_6 = 1.93$	- must start , $f(2) = 1.909$ focess (at least legrees (give be 2dp exact lusion for roo	with 02 st 3) s 1.0177) tly ot so A0 for	
	(iii)	y 2 1.5 1 0.5 -0.5 -1 $\pi/2$ π_{χ}	M1*	Sketch attempt at s 2π , and a positive x^{2} y-intercept Both graphs fully c some indication of with], with some in axes and with $y = x^{2}$ $(\frac{\pi}{2}, \approx 0.6)$	ine graph, wi linear graph, correct for [0, scale on both ndication of z - 1 passing	ith period of with negative π , π , with a axes and scale on both though	f ve h
	(iv)	One point of intersection oe	B1 d* [1]	Allow 'they will no equivalent	t cross again	' or	

	Page 4	Mark Scheme			Syllabus	Paper	
		Cambridge Pre-U – May/June 2015		9494	02		
		· · · · · ·					-
6	(i)	$\frac{dT}{dt}$ is the rate of change of T T-20 is difference between T and the temp of the room. k is the constant of proportionality negative since the temperature is decreasing.	B1 B1 [2]	At least two correc Fully correct expla	t points nation		
	(ii)	$\int \frac{1}{T-20} \mathrm{d}T = \int -k \mathrm{d}t$	M1	Separate variables both sides oe	and attempt i	integration of	of
		$\ln T - 20 $	A1	Correct $\ln(T-20)$			
		$= -kt + c$ $\ln 60 = c$ $T - 20 = e^{-kt + \ln 60} = e^{-kt} e^{\ln 60} = 60e^{-kt}$ $T = 20 + 60e^{-kt}$	A1 M1 M1 A1 [6]	Correct $-kt$ (allow Attempt <i>c</i> using <i>T</i> = required if rearrang e.g. $80 = 20 + A$) Could be using any integration attempt Rearrange expressi $\pm \ln T - 20 = \pm i$ including correct m exponentials – allo Must be sound alge Obtain <i>T</i> = 20 + 60 errors seen Must see $e^{-kt+\ln 60} =$ (oe in terms of <i>c</i>)	no +c) = 80, $t = 0$ (c gement is dor t function, fo to of form $kt \pm c$ to give nanipulation to wif still in te ebra through e^{-kt} , detail re $e^{-kt}e^{\ln 60} = 60e^{-kt}$	lear detail ne first llowing clea en expressio of logs and erms of c out quired and r	ar on, no
	(iii)	$\ln 40 = -2k + \ln 60 \text{OR} 60 = 20 + 60e^{-2k}$ $2k = \ln \frac{3}{2} \qquad e^{-2k} = \frac{2}{3}$ $k = \frac{1}{2}\ln \frac{3}{2} \qquad k = -\frac{1}{2}\ln \frac{2}{3}$	M1 M1 A1	Substitute $T = 60, k$ oe Attempt to find k, a using correct order Obtain $k = \frac{1}{2} \ln \frac{3}{2}$	t = 2 into give allow one slip of operation be, including	en expressio p but must b s 0.203	on, oe
			[3]				

Page 5

Mark Scheme Cambridge Pre-U – May/June 2015

7 (i)	$x^3 = 27t^3$	M1	Attempt to eliminate <i>t</i>
	$y = 1 + \frac{1}{27}x^3$ AG	A1	Obtain given answer convincingly
		[2]	M1A0 for $y = 1 + \left(\frac{x}{3}\right)^3 = 1 + \frac{1}{27}x^3$
(ii)	$1 + \frac{1}{27}x^3 = x^2 + 4x - 19$	M1	Reduce to equation in one variable
	$x^{3} - 27x^{2} - 108x + 540 = 0$ (x - 3)(x ² - 24x - 180) = 0	M1* A1	Attempt division by $(x - 3)$ Obtain correct quotient
	(x-30)(x+6) = 0 x = 30 or -6 points (30, 1001) and (-6, -7)	M1d* A1 A1	Attempt to solve quadratic quotient Obtain correct roots Obtain coordinates of both points
	OR	[6]	
	$1 + t^{3} = 9t^{2} + 12t - 19$ $t^{3} - 9t^{2} - 12t + 20 = 0$	M1	Reduce to equation in one variable
	$(t-1)(t^2 - 8t - 20) = 0$	M1*	Attempt division by $(t-1)$
	(t-1)(t-10)(t+2) = 0	M1d*	Attempt to solve quadratic quotient
	t = 1, 10 or -2 points (30, 1001) and (-6, -7)	Al	Correct factorisation (could be implied by roots)
	I	A1	Obtain coordinates of both points
8	$f'(x) = \frac{2x(3x^2 - 1) - x^2(6x)}{(3x^2 - 1)^2}$	M1 A1	Attempt use of quotient rule, or equivalent Correct unsimplified expression
	$=\frac{-2x}{\left(3x^2-1\right)^2}$	A1	Correct simplified expression
	for $x > 0$, $-2x < 0$ and $()^2 > 0$ and $\frac{-ve}{+ve} < 0$	M1	Identify that $f'(x) < 0$ is required; allow
	hence decreasing function	A1	'gradient' for $f'(x)$
			show convincingly that the denominator is always positive and the numerator is always
			negative for $x > 1$, and hence $f'(x) < 0$
			Graphical solutions could get M1 for $f'(x) < 0$ is required, but need to show no
		[5]	stationary points to get any further credit

	Page 6	Mark Scheme				Paper	
		Cambridge Pre-U – May/J	une 20'	15	9494	02	
9		Cambridge Pre-U – May/J $2y \frac{dy}{dx} = 4x^3 - 12x^2$ $4x^2 (x-3) = 0$ $x = 0 \text{ or } x = 3$ $x = 0 \rightarrow y^2 = 36 \rightarrow y = \pm 6$ $x = 3 \rightarrow y^2 = 9 \rightarrow y = \pm 3$ hence equations are $y = 3, \ y = -3, \ y = 6, \ y = -6$	M1 A1 B1 M1 A1 M1 A1 A1 A1	Differentiate implie Obtain fully correct Use $\frac{dy}{dx} = 0$ Attempt to solve for Obtain $x = 0, 3$, ww Attempt to find y , 1 rooting Obtain at least two Obtain all four corr others (A1 A0 if final equ	9494 citly to get at t expression or x ww must include correct equa rect equation as given as $y =$ $\frac{2}{2}$ gets	02 least LHS square tions, www s, and no $=\pm 3, y = \pm$	6)
			[8]	M0A0B1M1A1M1 Using $y = \sqrt{x^4 - 4}$	$\overline{x^3 + 36}$ can	get full mar	ks
10	(i)	$\begin{pmatrix} 1 \end{pmatrix}$ 1 1					
	()	$\sin\left(2\theta + \frac{1}{2}\pi\right) = \sin 2\theta \cos \frac{1}{2}\pi + \sin \frac{1}{2}\pi \cos 2\theta$	M1	Use correct expans	ion		
		$\cos\frac{1}{2}\pi = 0, \sin\frac{1}{2}\pi = 1 \text{ so}$		These values must method for A1	be explicit of	r implied in	
		$\sin\left(2\theta + \frac{1}{2}\pi\right) = \cos 2\theta$	A1	Obtain given answ	er convincing	gly	
			[2]	Also allow argume transformations	ents by linear		
	(ii)	$\sin\!\left(2\theta+\frac{1}{2}\pi\right)=\sin 3\theta,$					
		A: $2\theta + \frac{1}{2}\pi = 3\theta \Longrightarrow \theta = \frac{1}{2}\pi$	B1	Obtain $\frac{1}{2}\pi$			
		B: $3\theta = \pi - \left(2\theta + \frac{1}{2}\pi\right)$	M1	Attempt second sol sin curve oe	lution using s	symmetry of	E
		$\theta = \frac{1}{10}\pi$	A1	Obtain $\frac{1}{10}\pi$			
		$3\theta = \pi - \left(2\theta + \frac{1}{2}\pi\right) + 4\pi \Longrightarrow \theta = \frac{9}{10}\pi$	A1	Obtain $\frac{9}{10}\pi$			
		$3\theta = \pi - \left(2\theta + \frac{1}{2}\pi\right) + 6\pi \Longrightarrow \theta = \frac{13}{10}\pi$	A1	Obtain $\frac{13}{10}\pi$			
		$3\theta = \pi - \left(2\theta + \frac{1}{2}\pi\right) + 8\pi \Longrightarrow \theta = \frac{17}{10}\pi$	A1 [6]	Obtain $\frac{17}{10}\pi$ Accept decimal equation After B1M1A1 giv against final three π additional incorrect	uivalents for ren, apply per A marks for o t root	each root nalty of –1 each	

	Page 7	Mark Scheme	Mark Scheme			Paper	
		Cambridge Pre-U – May/June 2015			9494	02	
			1				
	(iii)	$\sin(2\theta + \theta) = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$	M1*	Expand using sin(2 Or use De Moivre's	$(\theta + \theta)$ s theorem		
		$= 2\sin\theta\cos^2\theta + (1-2\sin^2\theta)\sin\theta$	M1d*	Attempt to get expr only	ression in ter	ms of $\sin \theta$	
		$= 2\sin\theta - 2\sin^3\theta + \sin\theta - 2\sin^3\theta$					
		$= 3\sin\theta - 4\sin^3\theta$	A1	Obtain given answ	er convincing	gly	
		$cos2\theta - sin3\theta (= 0)(1 - 2 sin^2\theta) - (3sin\theta - 4sin^3\theta) (= 0)4sin^3\theta - 2 sin^2\theta - 3sin\theta + 1 (= 0)x = 0.309, 1 or -0.809 to 3sf$	M1 M1 A1	Attempt to rearrang Identify $x = \sin \theta$ (a attempt to use solu Obtain $x = 0.309$, 1	ge to compar could be imp tion(s) from , -0.809 (all	able format lied) and part (ii) ow 2dp)	
				Allow surd values	of $\frac{1}{4}(-1\pm\sqrt{1})$	(5)	
			[6]				
11	(i)	$RS = r\theta$ $RT = r \tan \theta$ $OT = r \cos \theta$	B1 B1	Correct <i>RS</i> Correct <i>RT</i>			
		$ST = r \sec \theta - r$ $P = r \sec \theta - r + r\theta + r \tan \theta$	M1 A1	Attempt <i>ST</i> Fully correct expre $\frac{1}{\cos \theta}$ for sec θ , but	ssion for P (out not $\sqrt{1 + \tan^2 \theta}$	could be $n^2 \theta$	
		$A = \frac{1}{2}RT \times OR$	M1	Attempt area of tria attempt at <i>RT</i>	angle – must	be valid	
		$-\frac{1}{2}r^2\theta$	B1	State correct area o	f sector		
		$=\frac{1}{2}r^2(\tan\theta-\theta)$	A1	Correct expression	for A		
			[7]				
	(ii)	Let $A = rP$,	M1	Equate A with rP (a	allow use of	≠)	
		$r^{2} \sec \theta - r^{2} + r^{2}\theta + r^{2} \tan \theta = \frac{1}{2}r^{2}(\tan \theta - \theta)$					
		so 2sec $\theta - 2 + \tan \theta + 3\theta = 0$	M1	Attempt to justify vequation only	why no solut	ions – correct	t
		for $0 < \theta < \frac{1}{2}\pi$, sec $\theta > 1$, so 2sec $\theta - 2 > 0$.	B1	State sec $\theta > 1$, or θ	equivalent		
		Since $\tan \theta > 0$ and $\theta > 0$ equality is impossible.	A1	Fully correct and c	onvincing ar	gument	
		so we have a contradiction.	[4]				