CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Pre-U Certificate

MARK SCHEME for the May/June 2015 series

9794 MATHEMATICS

9794/03
Paper 3 (Applications of Mathematics), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
® IGCSE is the registered trademark of Cambridge International Examinations.

1	$\begin{aligned} & S_{x x}=804.34-\frac{87.6^{2}}{10}=36.964 \\ & S_{y y}=596-\frac{76.4^{2}}{10}=12.304 \\ & S_{x y}=684.02-\frac{87.6 \times 76.4}{10}=14.756 \\ & r=\frac{S_{x y}}{\sqrt{S_{x x} \times S_{y y}}}=0.69192 \ldots \approx 0.692(3 \mathrm{sf}) \end{aligned}$	M1 M1 M1 M1 A1 [5]	Correct use of formula or equivalent form. As above. As above As above. c.a.o.
2 (a) (b) (i) (ii) (iii)	$\begin{aligned} & \frac{5!}{5^{5}}=\frac{120}{3125}=\frac{24}{625}=0.0384 \\ & X \sim \operatorname{Geo}\left(\frac{1}{5}\right) \\ & \mathrm{E}(X)=5 \\ & P(X \geqslant 3)=\left(\frac{4}{5}\right)^{2}=\frac{16}{25}=0.64 \end{aligned}$	M1 A1 [2] B1 [1] B1 [1] M1 A1 [2]	Product of 5 probabilities, at least 4 correct. c.a.o. Either fraction or decimal. Must give parameter as well as name. Allow $\frac{1}{\text { their } p}$ from (ii) Attempt $\mathrm{P}(X>3)$. Or equivalent methods. c.a.o. Either fraction or decimal.
(i) (ii)	$T \sim \mathrm{~N}\left(43.2,6.3^{2}\right)$ Require $\mathrm{P}(T<50)$ $\begin{aligned} & =P\left(Z<\frac{50-43.2}{6.3}=1.079(3 \ldots)\right) \\ & =0.8598 \end{aligned}$ $\frac{T-43.2}{6.3}=1.645$ $\begin{aligned} \therefore & T=43.2+1.645 \times 6.3=53.56 \\ & 60-53.56=6.44(\mathrm{~min}) \end{aligned}$ \therefore Jack should leave by 0806	M1 M1 A1 A1 [4] M1 B1 A1 A1 [4]	Formulate the problem. Standardising. c.a.o. Z value. From tables. Ft their Z value. Must involve use of difference columns. Set up equation for T. 1.645 seen. c.a.o. Interpret as time of day. Accept 0807.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2015	9794	03

(i) (ii)	$\begin{aligned} & 240 \sin 25 \\ & =101.428 \ldots \approx 101 \mathrm{~N} \\ & 1100 a=240 \cos 25-100 \\ & \therefore a=0.1068 \ldots \approx 0.107 \mathrm{~ms}^{-2} \end{aligned}$	M1 A1 [2] B1 M1 A1 A1 [4]	Resolve perpendicular to direction of travel. Allow sin/cos error. c.a.o. Resolve 240 in direction of travel. Allow consistent $\sin /$ cos error. N2L in direction of travel. Allow 1error, omission or extraneous term. All terms correct. c.a.o.
$7 \quad$ (i) (ii)	$\begin{aligned} & \text { Horiz: } \quad 18=2 u \cos \theta \\ & \text { Vert: } \quad 4=2 u \sin \theta-20 \\ & \therefore u \cos \theta=9 \text { and } u \sin \theta=12 \\ & \therefore \tan \theta=\frac{12}{9}=\frac{4}{3} \\ & u^{2}=9^{2}+12^{2}=225 \\ & \therefore u=15 \mathrm{~ms}^{-1} \\ & \begin{aligned} & R=\frac{2 u^{2}}{g} \sin \theta \cos \theta=\frac{2 \times 15^{2}}{10} \times \frac{4}{5} \times \frac{3}{5} \\ &=21.6 \mathrm{~m} \end{aligned} \end{aligned}$	B1 B1 M1 A1 M1 A1 [6] M1 A1 [2]	Use of $x=u t \cos \theta$ Use of $y=u t \sin \theta-\frac{1}{2} g t^{2}$ Attempt to eliminate u. A.G. Convincingly shown. Eliminate or substitute for θ. Allow u found first then θ using u provided it does not involve a circular argument. c.a.o. Use of formula for range, or equivalent. Ft their u.
(i) (ii)	 At the end of the first 16 seconds: $\begin{aligned} & v_{1}=(0+) 0.5 \times 16=8 \mathrm{~ms}^{-1} \\ & s_{1}=1 / 2(0+8) \times 16=64 \mathrm{~m} \\ & \text { or }(0+)^{1 / 2} \times 0.5 \times 16^{2} \end{aligned}$	B1 B1 [2] B1 B1 [2]	Trapezium (middle portion horizontal), one vertex at the origin, fourth vertex on the t axis. Third part steeper than first. Axes labelled t and v. Gradient of first line or 'suvat'. Area of LH triangle or 'suvat'.

(iii)	When slowing down: $\begin{aligned} & 0=8-1 \times t_{3} \quad \therefore t_{3}=8 \mathrm{~s} \\ & s_{3}=1 / 2(8+0) \times 8=32 \mathrm{~m} \end{aligned}$ At constant speed: $\begin{aligned} & s_{2}=300-(64+32)=204 \mathrm{~m} \\ & t_{2}=204 / 8=25.5 \mathrm{~s} \\ & \therefore \text { Total time }=16+25.5+8=49.5 \mathrm{~s} \end{aligned}$ ALTERNATIVE 1 When slowing down: $\begin{aligned} & 0=8-1 \times t_{3} \quad \therefore t_{3}=8 \mathrm{~s} \\ & \frac{1}{2}\left(2 t_{2}+24\right) \times 8=300 \end{aligned}$ $\begin{aligned} & \therefore 2 t_{2}+24=75 \\ & \therefore t_{2}=25.5 \mathrm{~s} \end{aligned}$ $\therefore \text { Total time }=16+25.5+8=49.5 \mathrm{~s}$ ALTERNATIVE 2 When slowing down: $\begin{aligned} & 0=8-1 \times t_{3} \quad \therefore t_{3}=8 \mathrm{~s} \\ & \frac{1}{2}(2 T-24) \times 8=300 \\ & \therefore 2 T-24=75 \\ & \therefore 2 T=99 \\ & \therefore \text { Total time } T=49.5 \mathrm{~s} \end{aligned}$	B1 B1 M1 A1 A1 [5] B1 B1 M1 A1 A1 [5] B1 B1 M1 A1 A1 [5]	Gradient of third line or 'suvat'. Ft their v_{1}. Area of RH triangle or 'suvat'. Ft their v_{1} and/or t_{3}. Use area of rectangle ... \ldots to find the time. Ft their v_{1} and/or t_{3}. A.G. Shown convincingly. Gradient of third line or 'suvat'. Ft their v_{1}. Total time $=t_{2}+24$. Area of trapezium. Ft their v_{1} and/or t_{3}. A.G. Shown convincingly. Gradient of third line or 'suvat'. Ft their v_{1}. Total time $T=t_{2}+24$. Area of trapezium. Fully correct. Ft their v_{1} and/or t_{3}. A.G. Shown convincingly.
(i) (ii) (iii)	$\begin{aligned} & \text { C of M: } 0.5 u(+0)=(0+) k v \\ & \therefore v=\frac{u}{2 k} \\ & \text { NEL: } v(-0)=e(u(-0)) \\ & \therefore \frac{u}{2 k}=e u \\ & \therefore e=\frac{1}{2 k} \\ & (0 \leqslant) e \leqslant 1 \\ & \therefore \frac{1}{2 k} \leqslant 1 \quad \therefore k \geqslant \frac{1}{2} \end{aligned}$	M1 A1 [2] M1 M1 A1 [3] M1 A1 [2]	c.a.o. Substitute or use their expression for v. c.a.o. Use of condition on e. A.G. Convincingly shown.

