MARK SCHEME for the May/June 2015 series

9794 MATHEMATICS

9794/03

Paper 3 (Applications of Mathematics), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge Pre-U – May/June 2015	9794	03

1	$S_{xx} = 804.34 - \frac{87.6^2}{10} = 36.964$	M1	Correct use of formula or equivalent form.
	$S_{yy} = 596 - \frac{76.4^2}{10} = 12.304$	M1	As above.
	$S_{xy} = 684.02 - \frac{87.6 \times 76.4}{10} = 14.756$	M1	As above
	$r = \frac{S_{xy}}{\sqrt{S_{xx} \times S_{yy}}} = 0.69192 \approx 0.692 \text{ (3sf)}$	M1 A1 [5]	As above. c.a.o.
2 (a)	$\frac{5!}{5^5} = \frac{120}{3125} = \frac{24}{625} = 0.0384$	M1	Product of 5 probabilities, at least 4 correct.
		A1 [2]	c.a.o. Either fraction or decimal.
(b) (i)	$X \sim \text{Geo}\left(\frac{1}{5}\right)$	B1 [1]	Must give parameter as well as name.
(ii)	$\mathrm{E}(X)=5$	B1 [1]	Allow $\frac{1}{their p}$ from (ii)
(iii)	$P(X \ge 3) = \left(\frac{4}{5}\right)^2 = \frac{16}{25} = 0.64$	M1 A1 [2]	Attempt $P(X > 3)$. Or equivalent methods. c.a.o. Either fraction or decimal.
3 (i)	$T \sim N(43.2, 6.3^{2})$ Require P(T < 50) = P\left(Z < \frac{50 - 43.2}{6.3} = 1.079(3)\right) = 0.8598	M1 M1 A1 A1	Formulate the problem. Standardising. c.a.o. Z value. From tables. Ft <i>their</i> Z value. Must involve use of difference columns.
(ii)	$\frac{T-43.2}{6.3} = 1.645$	[4] M1 B1	Set up equation for <i>T</i> . 1.645 seen.
	$T = 43.2 + 1.645 \times 6.3 = 53.56$ 60 - 53.56 = 6.44 (min) \therefore Jack should leave by 08 06	A1 A1 [4]	c.a.o. Interpret as time of day. Accept 08 07.

Page 3

Mark Scheme Cambridge Pre-U – May/June 2015

4	Answers as fractions need not be fully cancelled down.			
(i)	P(Same Sex) = $\left(\frac{9}{16} \times \frac{8}{15}\right) + \left(\frac{7}{16} \times \frac{6}{15}\right)$ = $\frac{114}{240} = \frac{19}{40}$ or 0.475	M1 M1 A1 [3]	One product with correct denominator. Add second product; same denominator. c.a.o.	
(ii)	P(Same sex AND Same year) = $\left(\frac{6}{16} \times \frac{5}{15}\right) + \left(\frac{4}{16} \times \frac{3}{15}\right) + \left(\frac{3}{16} \times \frac{2}{15}\right) + \left(\frac{3}{16} \times \frac{2}{15}\right)$ = $\frac{54}{240} = \frac{9}{40}$ or 0.225	M1 A1 A1	4 cases considered; sum of 4 products or terms. All correct. c.a.o.	
(iii)	240 40 P(Same year GIVEN Same sex) $=\frac{54/240}{114/240} = \frac{9}{10}$ or 0.4736	[3] M1 A1	Attempt a quotient of 2 probabilities, with either <i>their</i> (i) or (ii) used correctly. Quotient of $\frac{their$ (ii)}{1 + i}	
	114/240 19	A1 [3]	their (i) Ft their $\frac{(ii)}{(i)}$ provided final answer is between 0 and 1.	
5 (i)	$(X \sim) Bin(3, 0.7)$	B2 [2]	All 3 elements present and correct. Allow B1 for only 1 error/omission.	
(ii) (a)	$P(X = 2) = 3 \times 0.7^2 \times 0.3$ = 0.441	M1 M1 A1 [3]	${}^{3}C_{2} \times \dots$ $p^{2} \times q$ c.a.o.	
(b)	$P(X \ge 1) = 1 - 0.3^{3} = 0.973$	M1 A1 [2]	Or by summing P(1) P(3) c.a.o.	
(iii)	x 0 1 P(X=x) 0.027 0.973	B1 B1 B1 [3]	Values in top row. P(X=1) = their (ii)(b) P(X=0) = 1 - their (ii)(b) Bin(1, 0.973) earns full marks.	
(iv)	P(All contain a seedling) = 0.973^6 = $0.84854 \approx 0.849$	M1 A1 [2]	Ft <i>their</i> $P(X = 1)$. c.a.o.	

	Page 4	Mark Scheme			Syllabus	Paper	1
		Cambridge Pre-U – May/.	June 20 [°]	15	9794	03	
6	(i)	240sin 25	M1	Resolve perpendic	cular to direct	ion of travel	
		= 101.428 ≈ 101 N	A1 [2]	c.a.o.	1.		
	(ii)	$1100a = 240\cos 25 - 100$	B1	Resolve 240 in dir Allow consistent s	ection of trav in/cos error.	vel.	
			M1	N2L in direction or omission or extran	of travel. Allo neous term.	w lerror,	
		:. $a = 0.1068 \approx 0.107 \text{ ms}^{-2}$	A1 A1 [4]	All terms correct. c.a.o.			
7	(i)	Horiz: $18 = 2u\cos\theta$	B1	Use of $x = ut \cos \theta$			
		Vert: $4 = 2u\sin\theta - 20$	B1	Use of $y = ut \sin \theta$	$-\frac{1}{2}gt^2$		
		$\therefore u \cos \theta = 9$ and $u \sin \theta = 12$	M1	Attempt to eliminate	ate <i>u</i> .		
		$\therefore \tan \theta = \frac{12}{2} = \frac{4}{2}$	A1	A.G. Convincingly	y shown.		
		$u^2 = 9^2 + 12^2 = 225$	M1	Eliminate or subst Allow <i>u</i> found firs	itute for θ .	g <i>u</i> provided	it
		$\therefore u = 15 \text{ ms}^{-1}$	A1 [6]	does not involve a c.a.o.	cırcular argu	ment.	
	(ii)	$R = \frac{2u^2}{g}\sin\theta\cos\theta = \frac{2\times15^2}{10}\times\frac{4}{5}\times\frac{3}{5}$	M1	Use of formula for	range, or eq	uivalent.	
		= 21.6 m	A1 [2]	Ft their u.			
8	(i)	▲ 10					
			B1	Trapezium (middl vertex at the origin	e portion hori 1, fourth verte	izontal), one ex on the <i>t</i>	;
			B1	axis. Third part steeper and v.	than first. Ax	es labelled <i>i</i>	ţ
			[2]				
	(ii)	At the end of the first 16 seconds: $v_1 = (0 +) 0.5 \times 16 = 8 \text{ ms}^{-1}$ $s_1 = \frac{1}{2}(0 + 8) \times 16 = 64 \text{ m}$ or $(0 +) \frac{1}{2} \times 0.5 \times 16^2$	B1 B1	Gradient of first li Area of LH triang	ne or <i>'suvat'</i> . le or <i>'suvat</i> '.		
			[2]				

Page 5

Mark Scheme Cambridge Pre-U – May/June 2015

(iii)	When slowing down:	D1	Credient of third line on Survey
	$0 = 8 - 1 \times t_3 \therefore \ t_3 = 8 \ \mathrm{s}$	BI	Ft <i>their</i> v_1 .
	$s_3 = \frac{1}{2}(8+0) \times 8 = 32 \text{ m}$	B1	Area of RH triangle or 'suvat'. Ft their v_1 and/or t_3 .
	At constant speed:	M1	
	$s_2 = 300 - (64 + 32) = 204 \text{ m}$ $t_2 = 204/8 = 25.5 \text{ s}$	A1	to find the time. Ft <i>their</i> v_1 and/or t_3 .
	:. Total time = $16 + 25.5 + 8 = 49.5$ s	A1 [5]	A.G. Shown convincingly.
	ALTERNATIVE 1		
	When slowing down: $0 = 8$, $1 \times t_{1} = 1 \times t_{2}$	R1	Gradient of third line or 'suvat'
	1 (2 - 24) = 200	DI	Ft <i>their</i> v_1 .
	$\frac{-(2t_2+24)\times 8}{2} = 300$	B1 M1	Total time = $t_2 + 24$.
		IVII	Ft <i>their</i> v_1 and/or t_3 .
	$\therefore 2t_2 + 24 = 75$. 1	
	$\therefore t_2 = 25.5 \text{ s}$: Total time = 16 + 25 5 + 8 = 49 5 s	AI A1	A.G. Shown convincingly.
		[5]	
	ALTERNATIVE 2		
	When slowing down: $0 = 8$, $1 \times t$, $t = 8$ c	R 1	Gradient of third line or 'suwat'
	$0 - 0 - 1 \times i_3 \dots i_3 - 0.5$	DI	Ft <i>their</i> v_1 .
	$\frac{1}{2}(2T-24) \times 8 = 300$	B1 M1	Total time $T = t_2 + 24$.
	2	A1	Fully correct. Ft <i>their</i> v_1 and/or t_3 .
	$\therefore 2T - 24 = 75$		
	$\therefore 2T = 99$	A 1	
	\therefore Total time $T = 49.5$ s	AI	A.G. Shown convincingly.
		[5]	
9 (i)	C of M: $0.5u (+ 0) = (0 +) kv$	M1	
	$\therefore v = \frac{u}{2L}$	A1	c.a.o.
	2K	[2]	
(ii)	NEL: $v(-0) = e(u(-0))$	M1	
	$\therefore \frac{u}{2k} = eu$	M1	Substitute or use <i>their</i> expression for <i>v</i> .
	$\therefore e = \frac{1}{2k}$	A1	c.a.o.
	20	[3]	
(iii)	$(0 \le) e \le 1$	M1	Use of condition on <i>e</i> .
	$\therefore \frac{1}{2k} \leqslant 1 \qquad \therefore k \geqslant \frac{1}{2}$	A1 [2]	A.G. Convincingly shown.

Page 6	Mark Scheme		Paper
	Cambridge Pre-U – May/June 2015	9794	03

10	$a = -g \sin \theta = -0.4$ When $t = 2$ $s = 2.5 \times 2 - \frac{1}{2} \times 0.4 \times 2^2$ = 4.2 m	B1 M1 A1	Use an appropriate ' <i>suvat</i> ' equation. Or could find $v (= 1.7 \text{ ms}^{-1})$. Correct outcome.
	When $s = 4.2$ $4.2 = 2.5t - 0.2t^2$ $\therefore t^2 - 12.5t + 21 = 0$ $\therefore (t - 2)(t - 10.5) = 0$ $\therefore t = 10.5 \text{ s}$	M1 A1 A1	Or could use $v = -1.7 \text{ ms}^{-1}$. Use another appropriate ' <i>suvat</i> ' equation. E.g. quadratic equation for <i>t</i> . Solved. Correct value of <i>t</i> chosen. c.a.o.
	At top of motion: $t = \frac{1}{2} (2 + 10.5) = 6.25 \text{ s}$ $s = 2.5 \times 6.25 - \frac{1}{2} \times 0.4 \times 6.25^2$ = 7.8125 m Total distance $= 2 \times 7.8125 - 4.2$ = 11.425 m	M1 A1 M1 A1 [10]	Ft <i>their</i> 10.5. Or $0^2 = 2.5^2 - 2 \times 0.4 \times s$. Or find distance from the mark to the top (= 3.6125). Or equivalent. c.a.o.