Cambridge International Examinations
 Cambridge Pre-U Certificate

MATHEMATICS

9794/01
Paper 1 Pure Mathematics 1
May/June 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge Pre-U - May/June 2016 | 9794 | 01 |

Question	Answer	Marks
1	State $m=-\frac{1}{5}$ Form equation $(y-11)=($ their $m)(x-1)$ or $11=($ their $m)(1)+\mathrm{c}$ Obtain $y=-\frac{1}{5} x+\frac{56}{5}$ or equiv decimal form as final answer	B1 M1 A1 [3]
2 (i) (ii)	Obtain $4 \sqrt{20}$ or $4 \sqrt{2} \sqrt{5} \times \sqrt{2}$ Obtain $8 \sqrt{5}$ Obtain $10 \sqrt{5}$ or $5 \sqrt{5}$ Obtain $15 \sqrt{5}$	B1 B1 [2] B1 B1 [2]
3	Solve equation to obtain critical points Obtain - 5 and $\frac{4}{3}$ Show or imply method to obtain inequality, e.g. graph, table of signs State $x<-5$ or $x>\frac{4}{3}$ (ft critical points).	M1 A1 M1 A1ft [4]
$4 \quad$ (i) (ii) (iii)	Obtain 8, 11, 14 Use correct formula $a+(n-1) d=254$ Obtain 83 Use correct sum formula for AP Obtain $\frac{500}{2}(2(8)+(500-1) 3)$ Obtain 378250 cao Alternative method: Obtain $8+499(3)=1505$ and use correct $\frac{n}{2}(a+l)$ Obtain $\frac{500}{2}(8+1505)$ Obtain 378250 cao	B1 [1] M1 A1 [2] M1 A1 A1 [3] M1 A1 A1
5	State $(3,0)$ Obtain or imply equation of the form $k \pm 9= \pm 25$ Obtain $k+9=25$ Obtain $k=16$	B1 M1 A1 A1 [4]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	01

Question	Answer	Marks
$\begin{array}{ll}6 & \text { (i) } \\ & \\ & \\ & \\ & \\ & \\ & \\ \text { ii) }\end{array}$	Attempt to differentiate by reducing powers by one Obtain $12 x^{3}-60 x^{2}+72 x=0$ Factorise x and attempt to solve a 3 term quadratic (but condone cancellation of x) Obtain $(0,0),(2,32),(3,27)$ Obtain the second derivative or compare gradients or y values either side of each point. $36 x^{2}-120 x+72$ must be used with either substitution of the relevant x values, or the final values $72,-24$ and 36 must be shown and similarly for comparison of gradients. Conclude $(0,0) \min ,(2,32) \max ,(3,27) \min$ (condone incorrect or no y values for this mark). Generally correct shape of a quartic, two min and one max. Stationary points marked OR correct $y=27$ and $y=32$ shown clearly $27<k<32$	A1 M1 A1 M1 A1 [6] M1 A1 A1 [3]
$7 \quad$ (i) (ii) (iii)	Range of $\mathrm{f}: \mathrm{f}(x) \geq 2$ Range of g is all real numbers Obtain $(4 x+3)^{2}+2$ and $4\left(x^{2}+2\right)+3$ Obtain $16 x^{2}+24 x+11=4 x^{2}+11$ Attempt to solve quadratic to obtain a value for x Obtain $x=0$ and $x=-2$ Possibilities are $x \geq 0$ or $x \leq 0$. Either $y=\sqrt{x-2}$ or $y=-\sqrt{x-2}$ as appropriate for the domain	B1 A1 M1 A1 [4] B1 B1* [2]
8 (a)	Use integration by parts with $\mathrm{f}(x)=x$ and $\mathrm{g}^{\prime}(x)=\mathrm{e}^{-x}$ Obtain $-x \mathrm{e}^{-x}-\mathrm{e}^{-x}$ Substitute limits in the correct order with subtraction. This must be seen if wrong answer obtained. Obtain $1-\frac{2}{\mathrm{e}}$ with no sight of decimals.	M1 A1 M1 A1 [4]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	9794	01

Question	Answer	Marks
(b)	Use $u=x+1$ and substitute into the given integral Obtain $\int \frac{u-2}{u} \mathrm{~d} u$ Simplify to two terms and integrate or use by parts if integrating u^{-1} and differentiating ($u-2$) Obtain $x+1-2 \ln \|x+1\|+\mathrm{C}$ (A0 for omission of mod signs or +C) Alternative method 1: Obtain $1+\frac{k}{x+1}$ Obtain $1-\frac{2}{x+1}$ Attempt to integrate to obtain $x+\mathrm{kln}(x+1)$ Obtain $x-2 \ln \|x+1\|+\mathrm{C}$ (A0 for omission of mod signs or +C) Alternative method 2: Use parts on $(x-1)(x+1)^{-1}$ and obtain $(x-1) \ln (x+1)$ with a valid attempt at $\int \ln (x+1) \mathrm{d} x$ Find $\int \ln (x+1) \mathrm{d} x$, dealing with $\int \frac{x}{x+1} \mathrm{~d} x$ Obtain $(x-1) \ln (x+1)-(x+1) \ln (x+1)+(x+1)$ Obtain $x-2 \ln \|x+1\|+\mathrm{C}$	A1 M1 A1 M1 M1 A1 A1
9	Set up at least 2 equations: $4+2 \mu=35-5 \lambda, 7+3 \mu=6+2 \lambda, 3+7 \mu=14+3 \lambda$, Find a value for λ or μ from two of them Obtain $\mu=3, \lambda=5$ from the first two $(\mu=5, \lambda=8$ from last two; $\mu=3.61, \lambda=$ 4.76 from the first and last) Demonstrate inconsistency in third eqn, e.g. $7 \times 3-3 \times 5=6 \neq 11$ and state do not intersect. This requires correct values for λ and μ $(3+7(3)=24 \neq 14+3(5)=29 \text { or } 14 \neq-5)$ Show the direction vectors are not multiples of each other and state they are not parallel OR find angle between direction vectors $\left(=69.498^{\circ}\right)$ and state not parallel $\mathbf{O R}$ find dot product ($=17$) and state is not equal to 1 and therefore not parallel) State skew (requires accurate previous working)	M1 M1 A1 M1* B1* depB1 [6]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	01

Question	Answer	Marks
$\mathbf{1 0}$ (i)	Attempt use of product rule to produce an expression of the form $k \ln (2 y+3)+\frac{\operatorname{linear~in~} y}{\operatorname{linear~in~} y}$ Obtain $\ln (2 y+3)$ Obtain $\ldots+\frac{2(y-4)}{2 y+3}$ or unsimplified equiv Alternative method: Attempt use of product rule to produce $1=\frac{\mathrm{d} y}{\mathrm{~d} x}\left(\ln (2 y+3)+\frac{(y-4) \frac{2 \mathrm{~d} y}{\mathrm{~d} x}}{2 y+3}\right.$ Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y+3}{2 y-8+(2 y+3) \ln (2 y+3)}$ Obtain $\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{2 y-8+(2 y+3) \ln (2 y+3)}{2 y+3}$ Attempt to find value of y for which $x=0$ Obtain $y=-1$ and $y=4$ Substitute $y=-1$ into attempt from part (i) or into their attempt (however poor) at its reciprocal SR. -10 without working M1A0. Other incorrect answers with no working M0 Obtain -0.1 (dependent on correct answer from (i)) Substitute $y=4$ into attempt from part (i) or into their attempt (however poor) at its reciprocal. SR. $\ln 11$ without working M1A0. Other incorrect answers with no working M0 Obtain $\frac{1}{\ln 11}$ (dependent on correct answer from (i))	M1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	9794	01

Question	Answer	Marks
11 (i)	Use $\sin \left(\theta+\frac{\pi}{3}\right)=\sin \theta \cos \frac{\pi}{3}+\cos \theta \sin \frac{\pi}{3}$ (Award even if in incorrect expansion of $\sin ^{2}\left(\theta+\frac{\pi}{3}\right)$)	B1
	Expand $\sin ^{2}\left(\theta+\frac{\pi}{3}\right)$ to obtain a term involving $\sin \theta \cos \theta$	M1
	Use $\sin 2 \theta=2 \sin \theta \cos \theta$ Obtain $\frac{\sqrt{3}}{4} \sin 2 \theta \quad \mathbf{A G}$	B1 A1
	Alternative method	[4]
	Use $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$	B1
	Use $\cos \left(2 \theta+\frac{2}{3} \pi\right)=\cos 2 \theta \cos \frac{2}{3} \pi-\sin 2 \theta \sin \frac{2}{3} \pi$	B1
	Substitute and evaluate expression	M1
	Obtain $\frac{\sqrt{3}}{4} \sin 2 \theta \quad \mathbf{A G}$	A1
(ii)	Use the result in (i) to obtain an equation in $\sin 2 \theta$	M1
	Obtain $\sin 2 \theta=\frac{-1}{\sqrt{3}}$	A1
	Use correct order of operations to obtain θ from an eqn in $\sin 2 \theta$	M1
	Obtain any two correct angles	A1
	Obtain answers rounding to $-0.308,2.83,-1.261 .88$	A1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	01

Question	Answer	Marks
12	State $\frac{\mathrm{d} x}{\mathrm{~d} t}$ State $-\frac{k}{\sqrt{x}} \quad$ (award B1 for $\frac{k}{\sqrt{x}}$ if $k=-0.1$) Separate variables and integrate both sides, raising the powers by 1 Obtain $\frac{2}{3} x^{\frac{3}{2}}=-k t+C$ Substitute $x=4$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}= \pm 0.05$ to find k. Obtain $k=0.1$ Substitute $t=3$ and $x=4$ to find C (dependent on a value for k obtained from using $x=4$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}= \pm 0.05$) Obtain C $=5.63$ ($3333 \ldots$...) or $\frac{169}{30}$ or $\frac{169}{3}$ from $\frac{20}{3} x^{\frac{3}{2}}=-t+C$ or $-\frac{169}{30}$ if +c is placed on LHS Substitute $x=0.01$ into their solution provided of form $p x^{\frac{3}{2}}= \pm \mathrm{m} t+\mathrm{C}$ to find t Obtain $t=56.3$ or 56 days SR if $\frac{\mathrm{d} x}{\mathrm{~d} t}=k \sqrt{x}$ award a maximum of B 1 M 3 SR if $-\frac{k}{\sqrt{x}}$ stated then $k=-0.1$ leads to final correct answer deduct A1 for k and A1 for the final answer $=8 / 10$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{M}^{*} \\ \mathrm{~A} 1 \\ \text { depM1 } \\ \\ \text { A1 } \\ \\ \\ \text { M1 } \\ \text { A1 } \\ {[10]} \end{gathered}$

[^0]: ® IGCSE is the registered trademark of Cambridge International Examinations.

