

Cambridge International Examinations Cambridge Pre-U Certificate

MATHEMATICS

9794/01 May/June 2016

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

This document consists of 7 printed pages.

CAMBRIDGE International Examinations

Page 2	Mark Scheme	Syllabus	
	Cambridge Pre-U – May/June 2016	9794	01
Question	Answer		Marks
1	State $m = -\frac{1}{5}$		B1
	Form equation $(y - 11) = (\text{their } m)(x - 1) \text{ or } 11 = (\text{their } m)(1) + c$		M1
	Obtain $y = -\frac{1}{5}x + \frac{56}{5}$ or equiv decimal form as final answer		A1 [3
2 (i)	Obtain $4\sqrt{20}$ or $4\sqrt{2}\sqrt{5} \times \sqrt{2}$		B1
	Obtain $8\sqrt{5}$		B1 [2
(ii)	Obtain $10\sqrt{5}$ or $5\sqrt{5}$		B1
	Obtain 15 $\sqrt{5}$		B1 [2
3	Solve equation to obtain critical points		M1
	Obtain – 5 and $\frac{4}{3}$		A1
	Show or imply method to obtain inequality, e.g. graph, table of signs		M1
	State $x < -5$ or $x > \frac{4}{3}$ (ft critical points).		A1ft [4
4 (i)	Obtain 8, 11, 14		B1 [1
(ii)	Use correct formula $a + (n-1)d = 254$ Obtain 83		M1 A1 [2
(iii)	Use correct sum formula for AP		M1
	Obtain $\frac{500}{2}(2(8) + (500 - 1)3)$		A1
	Obtain 378 250 cao		A1
	Alternative method:		[3
	Obtain $8 + 499(3) = 1505$ and use correct $\frac{n}{2}(a+l)$		M1
	Obtain $\frac{500}{2}(8+1505)$		A1
	Obtain 378 250 cao		A1
5	State (3, 0) Obtain or imply equation of the form $k \pm 9 = \pm 25$ Obtain $k + 9 = 25$ Obtain $k = 16$		B1 M1 A1

A1

[4]

Obtain k = 16

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9794	01

Qı	iestion	Answer	Marks
6	(i)	Attempt to differentiate by reducing powers by one	M1
		$Obtain \ 12x^3 - 60x^2 + 72x = 0$	A1
		Factorise x and attempt to solve a 3 term quadratic (but condone cancellation of x)	M1
		Obtain (0, 0), (2, 32), (3, 27)	A1
		Obtain the second derivative or compare gradients or <i>y</i> values either side of each point.	M1
		$36x^2 - 120x + 72$ must be used with either substitution of the relevant x values, or the final values 72, -24 and 36 must be shown and similarly for comparison of gradients.	
		Conclude $(0, 0)$ min, $(2, 32)$ max, $(3, 27)$ min (condone incorrect or no y values for this mark).	A1 [6]
	(ii)	Generally correct shape of a quartic, two min and one max. Stationary points marked OR correct $y = 27$ and $y = 32$ shown clearly	M1 A1
		$\frac{1}{2} - \frac{1}{2} - \frac{1}$	A1 [3]
7	(i)	Range of f: $f(x) \ge 2$ Range of g is all real numbers	B1 B1 [2]
	(ii)	Obtain $(4x + 3)^2 + 2$ and $4(x^2 + 2) + 3$ Obtain $16x^2 + 24x + 11 = 4x^2 + 11$ Attempt to solve quadratic to obtain a value for x Obtain $x = 0$ and $x = -2$	
	(iii)	Possibilities are $x \ge 0$ or $x \le 0$. Either $y = \sqrt{x-2}$ or $y = -\sqrt{x-2}$ as appropriate for the domain	
8	(a)	Use integration by parts with $f(x) = x$ and $g'(x) = e^{-x}$ Obtain $-xe^{-x} - e^{-x}$ Substitute limits in the correct order with subtraction. This must be seen if wrong answer obtained.	
		Obtain $1 - \frac{2}{e}$ with no sight of decimals.	A1 [4]

Mark SchemeSyllabusPaperCambridge Pre-U – May/June 2016979401

Question	Answer	Marks
(b)	Use $u = x + 1$ and substitute into the given integral	M1
	Obtain $\int \frac{u-2}{u} du$	A1
	Simplify to two terms and integrate or use by parts if integrating u^{-1} and differentiating ($u - 2$)	M1
	Obtain $x + 1 - 2\ln x + 1 + C$ (A0 for omission of mod signs or + C)	A1 [4]
	Alternative method 1:	
	Obtain $1 + \frac{k}{x+1}$	M1
	Obtain $1 - \frac{2}{m+1}$	A1
	Attempt to integrate to obtain $x + k \ln (x + 1)$	M1
	Obtain $x - 2\ln x + 1 + C$ (A0 for omission of mod signs or + C)	A1
	Alternative method 2:	
	Use parts on $(x - 1)(x + 1)^{-1}$ and obtain $(x - 1)\ln(x + 1)$ with a valid attempt at $\int \ln(x + 1)dx$	M1
	Find $\int \ln(x+1)dx$, dealing with $\int \frac{x}{x+1}dx$	M1
	Obtain $(x - 1)\ln(x + 1) - (x + 1)\ln(x + 1) + (x + 1)$ Obtain $x - 2\ln x + 1 + C$	A1 A1
9	Set up at least 2 equations : $4 + 2\mu = 35 - 5\lambda$, $7 + 3\mu = 6 + 2\lambda$, $3 + 7\mu = 14 + 3\lambda$,	M1
	Find a value for λ or μ from two of them	M1
	Obtain $\mu = 3$, $\lambda = 5$ from the first two ($\mu = 5$, $\lambda = 8$ from last two; $\mu = 3.61$, $\lambda = 4.76$ from the first and last)	A1
	Demonstrate inconsistency in third eqn, e.g. $7 \times 3 - 3 \times 5 = 6 \neq 11$ and state do not intersect. This requires correct values for λ and μ $(3+7(3) = 24 \neq 14 + 3(5) = 29$ or $14 \neq -5$)	M1*
	Show the direction vectors are not multiples of each other and state they are not parallel	B1*
	OR find angle between direction vectors (= 69.498°) and state not parallel OR find dot product (= 17) and state is not equal to 1 and therefore not parallel)	
	State skew (requires accurate previous working)	depB1
		[6]

Pa	ge	5

Mark Scheme	Syllabus	Paper
Cambridge Pre-U – May/June 2016	9794	01

Question	Answer	Marks
10 (i)	Attempt use of product rule to produce an expression of the form $k \ln(2y+3) + \frac{\text{linear in } y}{\text{linear in } y}$	M1
	Obtain $\ln(2y+3)$	A1
	Obtain + $\frac{2(y-4)}{2y+3}$ or unsimplified equiv	A1 [3]
	<u>Alternative method:</u> $(y = 4)^{2dy}$	
	Attempt use of product rule to produce $1 = \frac{dy}{dx}(\ln(2y+3) + \frac{(y-4)\frac{2dy}{dx}}{2y+3})$	M1
	Obtain $\frac{dy}{dx} = \frac{2y+3}{2y-8+(2y+3)\ln(2y+3)}$	A1
	Obtain $\frac{dx}{dy} = \frac{2y - 8 + (2y + 3)\ln(2y + 3)}{2y + 3}$	A1
(ii)	Attempt to find value of <i>y</i> for which $x = 0$	M1
	Obtain $y = -1$ and $y = 4$	A1
	Substitute $y = -1$ into attempt from part (i) or into their attempt (however poor) at its reciprocal SR. -10 without working M1A0. Other incorrect answers with no working M0	M1
	Obtain -0.1 (dependent on correct answer from (i))	depA1
	Substitute $y = 4$ into attempt from part (i) or into their attempt (however poor) at its reciprocal. SR. ln 11 without working M1A0. Other incorrect answers with no working M0	M1
	Obtain $\frac{1}{\ln 11}$ (dependent on correct answer from (i))	depA1
		[6]

Page 6	Mark Scheme Cambridge Pre-U – May/June 2016	Syllabus 9794	Paper 01
Question	Answer		Marks
11 (i)	Use $\sin\left(\theta + \frac{\pi}{3}\right) = \sin\theta\cos\frac{\pi}{3} + \cos\theta\sin\frac{\pi}{3}$ (Award even if in incorrect expansion of $\sin^2\left(\theta + \frac{\pi}{3}\right)$)		B1
	Expand $\sin^2\left(\theta + \frac{\pi}{3}\right)$ to obtain a term involving $\sin\theta\cos\theta$ Use $\sin 2\theta = 2\sin\theta\cos\theta$		M1
	Obtain $\frac{\sqrt{3}}{4}\sin 2\theta$ AG		B1 A1 [4]
	<u>Alternative method</u> Use $\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$		B1
	Use $\cos(2\theta + \frac{2}{3}\pi) = \cos 2\theta \cos \frac{2}{3}\pi - \sin 2\theta \sin \frac{2}{3}\pi$		B1
	Substitute and evaluate expression Obtain $\frac{\sqrt{3}}{4}\sin 2\theta$ AG		M1 A1
(ii)	Use the result in (i) to obtain an equation in $\sin 2\theta$ Obtain $\sin 2\theta = \frac{-1}{\sqrt{3}}$		M1 A1
	Use correct order of operations to obtain θ from an eqn in sin 2θ Obtain any two correct angles Obtain answers rounding to $-0.308, 2.83, -1.26$ 1.88		M1 A1 A1 [5]

Page 7

Mark Scheme	Syllabus	Paper
Cambridge Pre-U – May/June 2016	9794	01

Question	Answer	Marks
12	State $\frac{dx}{dt}$	B1
	State $-\frac{k}{\sqrt{r}}$ (award B1 for $\frac{k}{\sqrt{r}}$ if $k = -0.1$)	B1
	Separate variables and integrate both sides, raising the powers by 1	M1
	$Obtain \ \frac{2}{3}x^{\frac{3}{2}} = -kt + C$	A1
	Substitute $x = 4$ and $\frac{dx}{dt} = \pm 0.05$ to find k.	M1*
	Obtain $k = 0.1$ Substitute $t = 3$ and $x = 4$ to find C	A1 depM1
	(dependent on a value for k obtained from using $x = 4$ and $\frac{dx}{dt} = \pm 0.05$)	
	Obtain C = 5. 63(3333) or $\frac{169}{30}$	A1
	or $\frac{169}{3}$ from $\frac{20}{3}x^{\frac{3}{2}} = -t + C$ or $-\frac{169}{30}$ if + c is placed on LHS	
	Substitute $x = 0.01$ into their solution provided of form $p x^{\frac{3}{2}} = \pm mt + C$ to find t Obtain $t = 56.3$ or 56 days	M1 A1 [10]
	SR if $\frac{dx}{dt} = k\sqrt{x}$ award a maximum of B1 M3	
	SR if $-\frac{k}{\sqrt{x}}$ stated then $k = -0.1$ leads to final correct answer deduct A1 for k	
	and A1 for the final answer = $8/10$	