

Cambridge International Examinations Cambridge Pre-U Certificate

## MATHEMATICS

9794/02 May/June 2016

Paper 2 Pure Mathematics 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

This document consists of 8 printed pages.



|   | Page 2 | Mark Scheme                                                                                                                                                                                                                                          |                                  | Syllabus Paper                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        | Cambridge Pre-U – May/Jun                                                                                                                                                                                                                            | e 2016                           | 9794 02                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 | (i)    | f(-2) = -12                                                                                                                                                                                                                                          | M1<br>A1<br>[2]                  | Substitute $x = -2$ , or any other complete<br>method – must get as far as attempting<br>the remainder but allow no more than 2<br>errors<br>If using inspection then allow M1 for<br>$(x + 2)(x^2 - 2x + k) - 2k$<br>Obtain –12 (no isw if then given as 12<br>or if given as $\frac{-12}{(x+2)}$ )<br>Must be identified as remainder so A0 if<br>just left at bottom of division attempt                                            |
|   | (ii)   | 12                                                                                                                                                                                                                                                   | B1FT<br>[1]                      | FT on their (i)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 |        | $3^{x} = \frac{5}{4}$<br>$x = \log_{3}(\frac{5}{4})$                                                                                                                                                                                                 | B1*<br>M1d*<br>M1d*<br>A1<br>[4] | State $3^x = {}^{5}/_{4}$<br>Allow using logs before rearranging, as<br>long as valid method to deal with<br>$\log(4 \times 3^x)$<br>Take logarithms and apply at least one<br>log rule correctly<br>Rearrange to make <i>x</i> the subject<br>Obtain correct answer aef<br>Allow BOD if no base specified<br>ISW decimal answer but not subsequent<br>incorrect log work, such as<br>$\log({}^{5}/_{4})/\log(3) = \log({}^{5}/_{12})$ |
| 3 |        | $log_{10} y = 2x + 4$<br>$y = 10^{2x+4}$<br>$= 10^{2x} \times 10^{4}$<br>$= 10000 \times 100^{x} \text{ AG}$<br>OR<br>$y = 10000 \times 100^{x}$<br>$log_{10} y = log_{10}10000 + log_{10}100^{x}$<br>$log_{10} y = 2x + 4$<br>Conclude convincingly | M1<br>M1<br>A1<br>[4]            | State equation of form $\log_{10} y = mx + c$<br>State $\log_{10} y = 2x + 4$<br>Base 10 must be seen, or implied by<br>later work<br>Attempt correct process to remove logs<br>Obtain $y = 10^{2x} \times 10^4$ and hence<br>$y = 10000 \times 100^x$<br>M1 – take logs of both sides<br>M1 – use one correct log rule<br>A1 – obtain $\log_{10} y = 2x + 4$<br>A1 – relate to $y = mx + c$                                           |
| 4 | (i)    | $ z_1  = \sqrt{5}  z_2  = 5$<br>$z_1 + z_2 = 5 + 5i$<br>$ z_1 + z_2  = \sqrt{50}$<br>$\sqrt{5} + 5 > \sqrt{50}$                                                                                                                                      | B1<br>M1<br>A1<br>A1<br>[4]      | Both correct<br>Attempt $z_1 + z_2$<br>Could be implied by attempt at $ z_1 + z_2 $<br>Obtain $\sqrt{50}$ oe<br>Conclude by approximating to sufficient<br>accuracy or comparing surds – A0 if no<br>clear comparison<br>Could also use geometrical argument                                                                                                                                                                           |

| Page 3 | Mark Scheme                                                                                                     | Syllabus Paper  |                                                                                                                                                                                                                                                            |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | Cambridge Pre-U – May/Jun                                                                                       | 9794 02         |                                                                                                                                                                                                                                                            |  |  |
| (ii)   |                                                                                                                 | B1<br>B1<br>[2] | Circle<br>Centre at $2 + i$ and radius of 2 soi<br>Circle should be approximately correct<br>i.e. have the <i>y</i> -axis as a tangent, and not<br>pass through the origin                                                                                 |  |  |
| 5 (i)  | $\frac{3(x+1) + (x+2)}{(x+2)(x+1)} = \frac{4x+5}{x^2+3x+2}$ OR                                                  | M1<br>A1<br>[2] | Attempt to add fractions using common<br>denominator<br>Simplify to obtain given answer                                                                                                                                                                    |  |  |
| (1)    | A(x+1) + B(x+2) = 4x+5<br>so A = 3 and B = 1.                                                                   | M1              | M1 – use partial fractions on RHS<br>A1 – obtain given answer                                                                                                                                                                                              |  |  |
| (ii)   | $-\frac{3}{(x+2)^2} - \frac{1}{(x+1)^2}$                                                                        | A1<br>A1<br>[3] | Differentiate both terms on the LHS, or<br>any other valid method<br>Obtain one correct term<br>Obtain fully correct $f'(x)$<br>Quotient rule:<br>M1 – attempt quotient rule<br>A1 – correct unsimplified expression<br>A1 – correct simplified expression |  |  |
| (iii)  | Denominators always +ve as $(x + k)^2 > 0$<br>Numerators always –ve, and <sup>-ve</sup> / <sub>+ve</sub> is -ve | M1<br>A1<br>[2] | State, or imply, that "decreasing"<br>implies $f'(x) < 0$ , and make some<br>attempt to use this<br>Conclude convincingly that $f'(x) < 0$<br>for all <i>x</i> (CWO, A0 if incorrect $f'(x)$ )                                                             |  |  |
| 6 (i)  | Angle $AOB = \cos^{-1} \frac{16 + 6 + 20}{\sqrt{38 \times 84}}$                                                 | M1<br>M1<br>M1  | Attempt <i>a.b</i> for $\pm OA$ and $\pm OB$ (at least 2 elements correct)<br>Use correct formula for their vectors<br>Attempt evaluation, with correct two<br>vectors                                                                                     |  |  |
|        | = 42.0°                                                                                                         | A1 [4]          | Obtain 42.0° (allow 42°) or 0.733 rad<br>If using cosine rule, then<br>M1 – attempt sides (at least 2 correct)<br>M1 – attempt cosine rule<br>M1 – rearrange to attempt angle<br>A1 – obtain 42.0°                                                         |  |  |

| Page 4        | Mark Scheme                                                                                                                                                                                                                                                                    |                              |                                                                                                                                                                                                                                                                                                                                                                                        | Syllabus                                                                                                                                                                                                                                                                                                                               | Paper                                                                                                             |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|               | Cambridge Pre-U – May/Jun                                                                                                                                                                                                                                                      | e 2016                       |                                                                                                                                                                                                                                                                                                                                                                                        | 9794                                                                                                                                                                                                                                                                                                                                   | 02                                                                                                                |
| (ii)          | $BA = -6\mathbf{i} + \mathbf{j} + \mathbf{k}$<br>$ BA  =  OA  \text{ hence isosceles } (\neq  OB  \text{ not nec})$                                                                                                                                                            | B1<br>M1<br>A1<br>[3]        | State correct <i>H</i><br>Find one side<br>than those fou<br>If <i>BA</i> or <i>AB</i> has<br>sufficient to ju<br>If <i>BA</i> or <i>AB</i> has<br>minimum of $\infty$<br>Conclude com<br>NB Angles an<br>exact form to<br>B0M1A1 if <i>B</i> .<br>B0M1A1 if <i>B</i> .<br>as of form $\pm$ 6<br>If using cosine<br>B1 – state corr<br>M1 – attempt<br>A1 – conclude<br>use of surd va | length or one<br>nd in part (i)<br>as been stated<br>ist state $\sqrt{38}$<br>as not been st<br>$\sqrt{36+1+1}$ ) mi-<br>vincingly<br>d sides must<br>demonstrate of<br>A or AB not e<br>A or AB not e<br>A or AB incon<br>$\mathbf{i} \pm \mathbf{j} \pm \mathbf{k}$<br>e rule, then<br>rect cosine ru<br>evaluation<br>e convincingl | l then<br>ated then a<br>ist be seen<br>be given in<br>equality<br>xplicit<br>rect, as long<br>le<br>y, including |
| 7 (i)<br>(ii) | f(0.7) = 0.0648 > 0<br>f(0.8) = -0.103 < 0<br>Sign change hence root<br>Graph of $y = x$ and $y = \cos x$                                                                                                                                                                      | M1<br>A1<br>[2]<br>B1<br>B1  | Evaluate at bo<br>Conclude by r<br>CWO<br>Sketch both gu<br>in correct p<br>and intercepts                                                                                                                                                                                                                                                                                             | referring to si<br>raphs                                                                                                                                                                                                                                                                                                               | gn change o                                                                                                       |
| (iii)         | $\frac{dy}{dx} = -\sin x$ since $0 < x < \pi/2$ the magnitude of $-\sin x$ is less than 1<br>therefore the iteration converges<br>or e.g.<br>$\frac{x  0.7  0.8}{dy/dx  -0.64  -0.71}$ magnitude of gradient in the region is less than 1<br>therefore the iteration converges | [2]<br>B1<br>M1<br>A1<br>[3] | State correct of<br>Consider mag<br>in general terr<br>Allow use of <sup>7</sup><br>Conclude usin<br>Allow $-1 < F'$<br>A0 for $ F'(x) $<br>A0 for $ F'(x) $<br>unless end poi                                                                                                                                                                                                         | nitude of grad<br>ns or at specif<br>$\frac{1}{4}$ as a specif<br>ag $ F'(x)  < 1$<br>(x) < 0<br>$\leq 1$<br>$< 1$ from $0 \leq 1$                                                                                                                                                                                                     | fic value(s)<br>ic value $x \leq \frac{\pi}{2},$                                                                  |

| Page 5 | Mark Scheme                                                                                                                                                                                                   |                                   |                                                           | Syllabus                                                                                                                                                                                                                                   | Paper                                                                                                                                                            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Cambridge Pre-U – May/Jun                                                                                                                                                                                     | e 2016                            |                                                           | 9794                                                                                                                                                                                                                                       | 02                                                                                                                                                               |
| (iv)   |                                                                                                                                                                                                               |                                   |                                                           |                                                                                                                                                                                                                                            |                                                                                                                                                                  |
|        |                                                                                                                                                                                                               | M1<br>A1<br>[2]                   | First two segn<br>At least 5 segn<br>Allow (ii) and       | nents                                                                                                                                                                                                                                      | ame graph                                                                                                                                                        |
| (v)    | $\cos (0.73905) - 0.73905 = +5.879 \times 10^{-5}$<br>$\cos (0.73915) - 0.73915 = -1.085 \times 10^{-4}$<br>By the sign change rule $\alpha$ lies in that interval<br>and therefore rounds to 0.7391 to 4 dp. | M1<br>A1<br>[2]                   | Evaluate at bo<br>(or values clos<br>Conclude by r<br>CWO | ser to the root                                                                                                                                                                                                                            | ;)                                                                                                                                                               |
| 8      | $4^{2} = r^{2} + r^{2} - 2r^{2} \cos \theta$ $r^{2}(1 - \cos \theta) = 8$ Arc $PQ = r\theta = \theta \sqrt{\frac{8}{1 - \cos \theta}}$                                                                        | B1<br>M1<br>A1<br>M1<br>A1<br>[5] | Rule etc<br>M1 – attempt<br>M1 – attempt                  | to eliminate <i>r</i> from<br>and that involves that involves that involves that involves that involves that involves the eliminate <i>r</i> from<br>to eliminate <i>r</i> from to use a correct $\theta$ and $\cos\theta$ priect identity | e subject<br>for r, or $r^2$<br>is = $r\theta$<br>ef<br>ef<br>ef<br>$r(1/2\theta)$ :<br>rolving r and<br>trig, Sine<br>$r$ from $s = r\theta$<br>ect identity to |

|   | Page 6 | Mark Scheme                                                                                                                                                                                                                       |           |                                                                                                                        | Syllabus                                               | Paper                   |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|
|   |        | Cambridge Pre-U – May/June 20                                                                                                                                                                                                     |           |                                                                                                                        | 9794                                                   | 02                      |
| 9 | (i)    |                                                                                                                                                                                                                                   | B1        | $\sec x = \frac{1}{\cos x}  \mathrm{o}$                                                                                | e seen anyw                                            | here                    |
|   |        | $\frac{\sin x}{1+\sin x} \equiv \frac{\sin x(1-\sin x)}{(1+\sin x)(1-\sin x)}$                                                                                                                                                    | M1        | Multiply top a $1 - \sin x$                                                                                            | nd bottom by                                           |                         |
|   |        | $\equiv \frac{\sin x - \sin^2 x}{1 - \sin^2 x}$                                                                                                                                                                                   | A1        | Obtain correct                                                                                                         | unsimplified                                           | expression              |
|   |        | $\equiv \frac{\sin x - 1 + \cos^2 x}{\cos^2 x}$                                                                                                                                                                                   | M1        | Write denomin                                                                                                          | hator as $\cos^2 x$                                    |                         |
|   |        | $\equiv \sec x \tan x - \sec^2 x + 1$                                                                                                                                                                                             | A1<br>[5] | Obtain correct                                                                                                         | simplified ex                                          | xpression               |
|   |        | OR<br>$\sec x \tan x - \sec^2 x + 1 \equiv \frac{\sin x - 1 + \cos^2 x}{\cos^2 x}$ $\equiv \frac{\sin x - \sin^2 x}{1 - \sin^2 x}$ $\equiv \frac{\sin x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \equiv \frac{\sin x}{1 + \sin x}$ |           | M1 – write wi<br>of $\cos^2 x$<br>M1 – attempt<br>only<br>A1 – obtain co<br>expression<br>A1 – obtain co<br>expression | expression in<br>prrect unsimp<br>on<br>prrect simplif | terms of sinx<br>lified |
|   | (ii)   | $\int_{0}^{\frac{1}{4}\pi} \frac{\sin x}{1+\sin x} dx = \int_{0}^{\frac{1}{4}\pi} \sec x \tan x - \sec^{2} x + 1dx$                                                                                                               | M1<br>A1  | Attempt integr<br>(at least two te<br>Obtain at least<br>if third term no                                              | erms)<br>two correct                                   | terms (allow            |
|   |        | $= \left[\sec x - \tan x + x\right]_0^{\frac{1}{4}\pi}$                                                                                                                                                                           | A1        | Obtain fully co                                                                                                        | •                                                      | · ·                     |
|   |        | $=(\sqrt{2}-1+\frac{1}{4}\pi)-(1-0+0)$                                                                                                                                                                                            | M1        | Attempt correct<br>order and subt<br>integration atte                                                                  | raction) in th                                         | · ·                     |
|   |        | _                                                                                                                                                                                                                                 | B1        | State or imply                                                                                                         | - ,                                                    |                         |
|   |        | $=\frac{1}{4}\pi + \sqrt{2} - 2  \mathbf{AG}$                                                                                                                                                                                     | A1        | Obtain given a                                                                                                         | •                                                      |                         |
|   |        |                                                                                                                                                                                                                                   | [6]       | Allow non 'he                                                                                                          | nce' methods                                           | 3                       |

Page 7

## Mark Scheme Cambridge Pre-U – May/June 2016

| 10 (i) | $u = \frac{1}{x}$ and $\frac{du}{dx} = -\frac{1}{x^2}$<br>sin(1)                                                                                                                   | M1*       | Attempt to link du and dx, to obtain $kx^{-2}$                                                                                           |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
|        | So $\int \frac{\sin\left(\frac{1}{x}\right)}{x^2} dx = \int -\sin u du$                                                                                                            | A1        | Correct integrand in terms of <i>u</i>                                                                                                   |
|        | $= \cos u + c = \cos\left(\frac{1}{x}\right) + c$                                                                                                                                  | M1d*      | Attempt integration of their $f(u) - of$<br>form $a\sin u$                                                                               |
|        |                                                                                                                                                                                    | A1<br>[4] | Correct integral in terms of x, including $+ c$                                                                                          |
| (ii)   |                                                                                                                                                                                    | M1        | Attempt correct use of limits in <i>their</i> integral from part (i)<br>Allow M1 for muddles with fractions, such as $\cos(^{1}/_{\pi})$ |
|        | $\int_{\frac{1}{2\pi}}^{\frac{1}{2\pi}} \frac{\sin\left(\frac{1}{x}\right)}{x^2} dx = -2$ $\int_{\frac{1}{2\pi}}^{\frac{1}{2\pi}} \frac{\sin\left(\frac{1}{x}\right)}{x^2} dx = 2$ | A1        | Obtain –2 cwo                                                                                                                            |
|        | $\int_{-\infty}^{\frac{1}{2\pi}} \frac{\sin\left(\frac{1}{x}\right)}{x^2} dx = 2$                                                                                                  | A1        | Obtain 2 cwo                                                                                                                             |
|        | /3π                                                                                                                                                                                | [3]       |                                                                                                                                          |
| (iii)  | $\int_{\frac{1}{n\pi}}^{\frac{1}{n\pi}} \frac{\sin\left(\frac{1}{x}\right)}{x^2} dx = \cos(n\pi) - \cos((n+1)\pi)$                                                                 | B1        | Correct general expression in terms of <i>n</i> (no FT on incorrect integral)                                                            |
|        | $cos(n\pi) = 1$ if <i>n</i> is even and $-1$ if <i>n</i> is odd                                                                                                                    | M1        | Consider values of $cos(n\pi)$ , or another relevant expression e.g. $-2sin(n\pi + \pi/2)$                                               |
|        | So the integral is either $1 + 1 = 2$ if <i>n</i> even<br>or $-1 - 1 = -2$ if <i>n</i> odd                                                                                         | A1        | Fully convincing argument (including                                                                                                     |
|        | or $-1 - 1 = -2$ if <i>n</i> odd                                                                                                                                                   | [3]       | relevant subtractions) from cwo                                                                                                          |

| Page 8  | Mark Scheme                                                                                                                       |           | Syllabus Paper                                                                                                                                                                                  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Cambridge Pre-U – May/                                                                                                            | June 2016 | 9794 02                                                                                                                                                                                         |
|         |                                                                                                                                   |           | 1                                                                                                                                                                                               |
| l (a)   | $f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$                                                                          | M1        | Attempt $\frac{1}{h} [f(x+h) - f(x)]$                                                                                                                                                           |
|         | $\sqrt{x+h} - \sqrt{x} \sqrt{x+h} + \sqrt{x}$                                                                                     | A1        | Obtain correct expression (allow<br>unsimplified denominator of<br>x + h - x)                                                                                                                   |
|         | $=\lim_{h\to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}\cdot\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}$                                 | M1        | Multiply top and bottom by $\sqrt{(x+h)} + \sqrt{x}$                                                                                                                                            |
|         | $= \lim_{h \to 0} \frac{x + h - x}{h(\sqrt{x + h} + \sqrt{x})}$                                                                   | A1        | Simplify expression as far as possible                                                                                                                                                          |
|         | $= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$                          | A1<br>[5] | Complete proof by considering $\lim h \to 0$                                                                                                                                                    |
|         | OR                                                                                                                                |           |                                                                                                                                                                                                 |
|         | $f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$                                                                          |           | M1 – attempt $\frac{1}{h} [f(x+h) - f(x)]$<br>A1 – obtain correct expression (allow                                                                                                             |
|         | $= \lim_{h \to 0} \frac{\sqrt{x} \left( 1 + \frac{1}{2} \frac{h}{x} - \frac{1}{8} \frac{h^2}{x^2} + \dots \right) - \sqrt{x}}{h}$ |           | unsimplified denominator of $x + h - x$                                                                                                                                                         |
|         | $= \lim_{h \to 0} \frac{\sqrt{x} + \frac{1}{2} \frac{h}{\sqrt{x}} + h^{2} () - \sqrt{x}}{h}$                                      |           | M1 – attempt binomial expansion wit $h/x$                                                                                                                                                       |
|         | $h \to 0$ $h$<br>= $\lim_{h \to 0} \frac{1}{2} \frac{1}{\sqrt{x}} + h()$                                                          |           | A1 – simplify expression as far as possible                                                                                                                                                     |
|         | $=\frac{1}{2\sqrt{x}}$                                                                                                            |           | M1 – complete proof by considering I<br>$h \rightarrow 0$<br>Could also go via $\frac{\delta x}{\delta y}$ , from $x = y^2$                                                                     |
| (b) (i) | $y - \sqrt{a} = \frac{1}{2\sqrt{a}}(x - a), y - \sqrt{b} = \frac{1}{2\sqrt{b}}(x - b)$                                            | M1        | Attempt equations of both tangents                                                                                                                                                              |
|         | $\frac{1}{2\sqrt{a}}(x-a) + \sqrt{a} = \frac{1}{2\sqrt{b}}(x-b) + \sqrt{b}$                                                       | A1<br>M1  | Obtain both correct equations<br>Eliminate one variable and attempt to<br>solve – as far as a correct equation in<br>which $x$ appears only once<br>Allow M1 if solving normals not<br>tangents |
|         | $x = \sqrt{ab} \qquad AG$ $y = \frac{1}{2} \left( \sqrt{a} + \sqrt{b} \right) \qquad AG$                                          | A1        | Obtain $x = \sqrt{ab}$ , detail required                                                                                                                                                        |
|         | $y = \frac{1}{2} \left( \sqrt{a} + \sqrt{b} \right)  \mathbf{AG}$                                                                 | A1 [5]    | Obtain $y = \frac{1}{2}(\sqrt{a} + \sqrt{b})$ , detail require                                                                                                                                  |
| (ii)    | Any valid solution<br>e.g. $a = 4$ and $b = 16$                                                                                   | M1        | State a pair of values that give one integer coord                                                                                                                                              |
|         |                                                                                                                                   | A1        | State a pair of values that give both integer coords                                                                                                                                            |
|         |                                                                                                                                   | [2]       |                                                                                                                                                                                                 |