Cambridge International Examinations
 Cambridge Pre-U Certificate

MATHEMATICS

9794/02
Paper 2 Pure Mathematics 2
May/June 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	$\mathbf{0 2}$

1 (i) (ii)	$f(-2)=-12$ 12	A1 [2] B1FT [1]	Substitute $x=-2$, or any other complete method - must get as far as attempting the remainder but allow no more than 2 errors If using inspection then allow M1 for $(x+2)\left(x^{2}-2 x+k\right)-2 k$ Obtain -12 (no isw if then given as 12 or if given as ${ }^{-12} /(x+2)$) Must be identified as remainder so A0 if just left at bottom of division attempt FT on their (i)
2	$3^{x}=5 / 4$ $x=\log _{3}(5 / 4)$	B1* M1d* M1d* A1	State $3^{x}=5 / 4$ Allow using logs before rearranging, as long as valid method to deal with $\log \left(4 \times 3^{x}\right)$ Take logarithms and apply at least one log rule correctly Rearrange to make x the subject Obtain correct answer aef Allow BOD if no base specified ISW decimal answer but not subsequent incorrect \log work, such as $\log (5 / 4) / \log (3)=\log (5 / 12)$
3	$\log _{10} y=2 x+4$ $\begin{aligned} y & =10^{2 x+4} \\ & =10^{2 x} \times 10^{4} \\ & =10000 \times 100^{x} \mathbf{A G} \end{aligned}$ OR $\begin{aligned} & y=10000 \times 100^{x} \\ & \log _{10} y=\log _{10} 10000+\log _{10} 100^{x} \\ & \log _{10} y=2 x+4 \\ & \text { Conclude convincingly } \end{aligned}$	M1 A1 M1 A1 [4]	State equation of form $\log _{10} y=m x+c$ State $\log _{10} y=2 x+4$ Base 10 must be seen, or implied by later work Attempt correct process to remove logs Obtain $y=10^{2 x} \times 10^{4}$ and hence $y=10000 \times 100^{x}$ M1 - take logs of both sides M1 - use one correct log rule A1 - obtain $\log _{10} y=2 x+4$ A1 - relate to $y=m x+c$
4 (i)	$\begin{aligned} & \left\|z_{1}\right\|=\sqrt{ } 5\left\|z_{2}\right\|=5 \\ & z_{1}+z_{2}=5+5 \mathrm{i} \\ & \\ & \left\|\mathrm{z}_{1}+z_{2}\right\|=\sqrt{ } 50 \\ & \sqrt{ } 5+5>\sqrt{ } 50 \end{aligned}$	B1 M1 A1 A1 [4]	Both correct Attempt $z_{1}+z_{2}$ Could be implied by attempt at $\left\|\mathrm{z}_{1}+z_{2}\right\|$ Obtain $\sqrt{ } 50$ oe Conclude by approximating to sufficient accuracy or comparing surds - A0 if no clear comparison Could also use geometrical argument

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	$\mathbf{0 2}$

(ii)		B1 B1 [2]	Circle Centre at $2+\mathrm{i}$ and radius of 2 soi Circle should be approximately correct i.e. have the y-axis as a tangent, and not pass through the origin
5 (i) (ii) (iii)	$\frac{3(x+1)+(x+2)}{(x+2)(x+1)}=\frac{4 x+5}{x^{2}+3 x+2}$ OR $\mathrm{A}(x+1)+\mathrm{B}(x+2)=4 x+5$ so $\mathrm{A}=3$ and $\mathrm{B}=1$. $-\frac{3}{(x+2)^{2}}-\frac{1}{(x+1)^{2}}$ Denominators always +ve as $(x+k)^{2}>0$ Numerators always -ve, and ${ }^{-\mathrm{ve}} / \mathrm{tve}$ is -ve	A1 [2] M1 A1 A1 [3] M1 A1 [2]	Attempt to add fractions using common denominator Simplify to obtain given answer M1 - use partial fractions on RHS A1 - obtain given answer Differentiate both terms on the LHS, or any other valid method Obtain one correct term Obtain fully correct $\mathrm{f}^{\prime}(x)$ Quotient rule: M1 - attempt quotient rule A1 - correct unsimplified expression A1 - correct simplified expression State, or imply, that "decreasing" implies $\mathrm{f}^{\prime}(x)<0$, and make some attempt to use this Conclude convincingly that $\mathrm{f}^{\prime}(x)<0$ for all x (CWO, A0 if incorrect $\mathrm{f}^{\prime}(x)$)
6 (i)	$\begin{aligned} \text { Angle } A O B & =\cos ^{-1} \frac{16+6+20}{\sqrt{38 \times 84}} \\ & =42.0^{\circ} \end{aligned}$	M1 M1 M1 A1 [4]	Attempt $a . b$ for $\pm O A$ and $\pm O B$ (at least 2 elements correct) Use correct formula for their vectors Attempt evaluation, with correct two vectors Obtain 42.0° (allow 42°) or 0.733 rad If using cosine rule, then M1 - attempt sides (at least 2 correct) M1 - attempt cosine rule M1 - rearrange to attempt angle A1 - obtain 42.0°

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	$\mathbf{0 2}$

(ii)	$\|B A\|=\|O A\|$ hence isosceles $(\neq\|O B\|$ not nec $)$			B1 M1 A1 [3]	State correct $B A$ or $A B$ Find one side length or one angle other than those found in part (i) If $B A$ or $A B$ has been stated then sufficient to just state $\sqrt{ } 38$ If $B A$ or $A B$ has not been stated then a minimum of $\sqrt{ }(36+1+1)$ must be seen Conclude convincingly NB Angles and sides must be given in exact form to demonstrate equality B0M1A1 if $B A$ or $A B$ not explicit B0M1A1 if $B A$ or $A B$ incorrect, as long as of form $\pm 6 \mathbf{i} \pm \mathbf{j} \pm \mathbf{k}$ If using cosine rule, then B1 - state correct cosine rule M1 - attempt evaluation A1 - conclude convincingly, including use of surd value for $\cos 42^{\circ}$
$\begin{array}{rr}7 & \text { (i) } \\ & \\ & \text { (ii) } \\ & \\ & \\ & \text { (iii) }\end{array}$	$\begin{aligned} & \mathrm{f}(0.7)=0.0648>0 \\ & \mathrm{f}(0.8)=-0.103<0 \end{aligned}$ Sign change hence root			M1 A1 [2]	Evaluate at both 0.7 and 0.8 Conclude by referring to sign change oe CWO
	Graph of $y=x$ and $y=\cos x$			B1 B1 [2]	Sketch both graphs... ... in correct proportion to each other and intercepts correct
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\sin x$ since $0<x<\pi / 2$ the magnitude of $-\sin x$ is less than 1			B1 M1 A1	State correct derivative Consider magnitude of gradient, either in general terms or at specific value(s) Allow use of $\pi / 4$ as a specific value Conclude using $\left\|\mathrm{F}^{\prime}(x)\right\|<1$ Allow $-1<\mathrm{F}^{\prime}(x)<0$
	x	0.7	0.8	[3]	
	magnitude of gradient in the region is less than 1 therefore the iteration converges				A0 for $\left\|\mathrm{F}^{\prime}(x)\right\|<1$ from $0 \leqslant x \leqslant \pi / 2$, unless end point clearly dealt with

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	$\mathbf{0 2}$

(iv) (v)	$\begin{aligned} & \cos (0.73905)-0.73905=+5.879 \ldots \times 10^{-5} \\ & \cos (0.73915)-0.73915=-1.085 \ldots \times 10^{-4} \end{aligned}$ By the sign change rule α lies in that interval and therefore rounds to 0.7391 to 4 dp .	M1 A1 A1	First two segments At least 5 segments Allow (ii) and (iv) on the same graph Evaluate at both 0.73905 and 0.73915 (or values closer to the root) Conclude by referring to sign change CWO
8	$\begin{aligned} & 4^{2}=r^{2}+r^{2}-2 r^{2} \cos \theta \\ & r^{2}(1-\cos \theta)=8 \\ & \text { Arc } P Q=r \theta=\theta \sqrt{\frac{8}{1-\cos \theta}} \end{aligned}$	B1 M1 A1 M1 A1 [5]	State $4^{2}=r^{2}+r^{2}-2 r^{2} \cos \theta$ Attempt to make r, or r^{2}, the subject Obtain a correct expression for r, or r^{2} Attempt to eliminate r from $s=r \theta$ Obtain correct arc length, aef For expressions that involve $f(1 / 2 \theta)$: B1 - correct expression involving r and $1 / 2 \theta$ (e.g. right-angled trig, Sine Rule etc.) M1 - attempt to eliminate r from $s=r \theta$ M1 - attempt to use a correct identity to link $\mathrm{f}(1 / 2 \theta)$ and $\cos \theta$ A1 - obtain correct identity A1 - obtain correct arc length, aef

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	$\mathbf{0 2}$

9 (i)		B1	$\sec x=\frac{1}{\cos x}$ oe seen anywhere
	$\frac{\sin x}{1+\sin x} \equiv \frac{\sin x(1-\sin x)}{(1+\sin x)(1-\sin x)}$	M1	Multiply top and bottom by $1-\sin x$
	$\equiv \frac{\sin x-\sin ^{2} x}{1-\sin ^{2} x}$	A1	Obtain correct unsimplified expression
	$\equiv \frac{\sin x-1+\cos ^{2} x}{\cos ^{2} x}$	M1	Write denominator as $\cos ^{2} x$
	$\equiv \sec x \tan x-\sec ^{2} x+1$	A^{A}	Obtain correct simplified expression
	OR		
	$\sec x \tan x-\sec ^{2} x+1 \equiv \frac{\sin x-1+\cos ^{2} x}{\cos ^{2} x}$		M1 - write with common denominator of $\cos ^{2} x$
	$\equiv \frac{\sin x-\sin ^{2} x}{1-\sin ^{2} x}$		M1 - attempt expression in terms of $\sin x$ only
	$\equiv \frac{\sin x(1-\sin x)}{\equiv} \equiv \frac{\sin x}{}$		A1 - obtain correct unsimplified expression
	$(1+\sin x)(1-\sin x) \quad \frac{1+\sin x}{}$		A1 - obtain correct simplified expression
(ii)	$\int_{0}^{\frac{1}{4} \pi} \frac{\sin x}{1+\sin x} \mathrm{~d} x=\int_{0}^{\frac{1}{4} \pi} \sec x \tan x-\sec ^{2} x+1 \mathrm{~d} x$	M1	Attempt integration of given expression (at least two terms)
		A1	Obtain at least two correct terms (allow if third term not yet integrated)
	$=[\sec x-\tan x+x]_{0}^{\frac{1}{4} \pi}$	A1	Obtain fully correct integral
	$=\left(\sqrt{2}-1+\frac{1}{4} \pi\right)-(1-0+0)$	M1	Attempt correct use of limits (correct order and subtraction) in their integration attempt
		B1	State or imply sec $\frac{1}{4} \pi=\sqrt{ } 2$
	$=\frac{1}{4} \pi+\sqrt{2}-2 \quad \mathbf{A G}$	A1	Obtain given answer convincingly
		[6]	Allow non 'hence' methods

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	$\mathbf{0 2}$

10 (i)	$u=\frac{1}{x} \text { and } \frac{\mathrm{d} u}{\mathrm{~d} x}=-\frac{1}{x^{2}}$	M1*	Attempt to link $\mathrm{d} u$ and $\mathrm{d} x$, to obtain $k x^{-2}$
	So $\int \frac{\sin \left(\frac{1}{x}\right)}{x^{2}} \mathrm{~d} x=\int-\sin u \mathrm{~d} u$	A1	Correct integrand in terms of u
	$=\cos u+c=\cos \left(\frac{1}{x}\right)+c$	M1d*	Attempt integration of their $\mathrm{f}(u)$ - of form $a \sin u$
		A1 [4]	Correct integral in terms of x, including $+c$
(ii)		M1	Attempt correct use of limits in their integral from part (i) Allow M1 for muddles with fractions, such as $\cos (1 / \pi)$
	$\int_{1 / 2 \pi}^{1 / 2} \frac{\sin \left(\frac{1}{x}\right)}{x^{2}} \mathrm{~d} x=-2$	A1	Obtain - 2 cwo
	$\int_{1 / 3 \pi}^{1 / 2 \pi} \frac{\sin \left(\frac{1}{x}\right)}{x^{2}} \mathrm{~d} x=2$	A1 [3]	Obtain 2 cwo
(iii)	$\int_{1 /(n+1) \pi}^{1 / n \pi} \frac{\sin \left(\frac{1}{x}\right)}{x^{2}} \mathrm{~d} x=\cos (n \pi)-\cos ((n+1) \pi)$	B1	Correct general expression in terms of n (no FT on incorrect integral)
	$\cos (n \pi)=1$ if n is even and -1 if n is odd		Consider values of $\cos (n \pi)$, or another relevant expression e.g. $-2 \sin (n \pi+\pi / 2)$
	So the integral is either $1+1=2$ if n even or $-1-1=-2$ if n odd	$\mathrm{A} 1$	Fully convincing argument (including relevant subtractions) from cwo
		[3]	

11 (a)

$$
\begin{aligned}
& \mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

OR

$\mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{x}\left(1+\frac{1}{2} \frac{h}{x}-\frac{1}{8} \frac{h^{2}}{x^{2}}+\ldots\right)-\sqrt{x}}{h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{x}+\frac{1}{2} \frac{h}{\sqrt{x}}+h^{2}(\ldots)-\sqrt{x}}{h}$
$=\lim _{h \rightarrow 0} \frac{1}{2} \frac{1}{\sqrt{x}}+h(\ldots)$
$=\frac{1}{2 \sqrt{x}}$
(b) (i)
$y-\sqrt{a}=\frac{1}{2 \sqrt{a}}(x-a), y-\sqrt{b}=\frac{1}{2 \sqrt{b}}(x-b)$
$\frac{1}{2 \sqrt{a}}(x-a)+\sqrt{a}=\frac{1}{2 \sqrt{b}}(x-b)+\sqrt{b}$
$x=\sqrt{a b}$
AG
$y=\frac{1}{2}(\sqrt{a}+\sqrt{b}) \quad \mathbf{A G}$
(ii) Any valid solution
e.g. $a=4$ and $b=16$

Attempt ${ }^{1} / h[\mathrm{f}(x+h)-\mathrm{f}(x)]$
Obtain correct expression (allow unsimplified denominator of $x+h-x$)

Multiply top and bottom by $\sqrt{ }(x+h)+\sqrt{ } x$

Simplify expression as far as possible
Complete proof by considering
$\lim h \rightarrow 0$

M1 - attempt ${ }^{1} / h[\mathrm{f}(x+h)-\mathrm{f}(x)]$
A1 - obtain correct expression (allow unsimplified denominator of $x+h-x$)

M1 - attempt binomial expansion with h / x
A1 - simplify expression as far as possible

M1 - complete proof by considering lim
$h \rightarrow 0$
Could also go via ${ }^{\delta x} / \delta y$, from $x=y^{2}$

M1

Obtain both correct equations
Eliminate one variable and attempt to solve - as far as a correct equation in which x appears only once
Allow M1 if solving normals not tangents
Obtain $x=\sqrt{a b}$, detail required
Attempt equations of both tangents

Obtain $y=\frac{1}{2}(\sqrt{a}+\sqrt{b})$, detail required

State a pair of values that give one integer coord
State a pair of values that give both integer coords

