Cambridge International Examinations
 Cambridge Pre-U Certificate

MATHEMATICS

9794/03
Paper 3 Applications of Mathematics
May/June 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	$\mathbf{0 3}$

1	$\begin{aligned} & S_{x y}=68.8-\frac{24.7 \times 33.9}{10}=-14.933 \\ & S_{x x}=74.93-\frac{24.7^{2}}{10}=13.921 \\ & S_{y y}=149.71-\frac{33.9^{2}}{10}=34.789 \\ & r=\frac{-14.933}{\sqrt{13.921 \times 34.789}}=-0.678(56 \ldots) \approx-0.679 \end{aligned}$	M1 M1 M1 A1 [4]	With no working shown allow only correct answers. Use of formula for numerator. Use of formula for either term in denominator. Use of formula for r. c.a.o. Must see unrounded value to at least 4sf first.
(i) (ii)	$\begin{aligned} & W \sim \mathrm{~N}\left(1.349,0.236^{2}\right) \\ & \mathrm{P}(W<1.100)=\mathrm{P}\left(Z<\frac{1.100-1.349}{0.236}\right) \\ & =\Phi(-1.055) \\ & =1-0.8543 \end{aligned}$ $=0.1457$ $\begin{aligned} & \Phi^{-1}(0.9)=1.282 \\ & w=1.349+1.282 \times 0.236 \\ & =1.6515 \ldots \approx 1.65(\mathrm{~kg}) \end{aligned}$	M1 B1 A1 [5] B1 M1 A1 [3]	Standardising. C.a.o. $1-\ldots$ to deal with negative z value. Correct table look-up, including use of difference columns: e.g. 0.8543 seen, ft abs(c's z-value). ft c 's negative z-value. Note: $\begin{aligned} & z=-1.05 \Rightarrow p=1-0.8531=0.1469 \\ & z=-1.06 \Rightarrow p=1-0.8554=0.1446 \end{aligned}$ Correct table look-up. C.a.o.
3 (i)	$\begin{aligned} & \sum x=20 \times 0.7+4=18 \\ & \sum x^{2}=20\left(0.9^{2}+0.7^{2}\right)+1+4+1=32 \\ & \bar{x}=\frac{18}{25}=0.72 \mathrm{~kg} \\ & s=\sqrt{\frac{32}{25}-0.72^{2}} \\ & \therefore s=\sqrt{0.7616}=0.872(69 \ldots) \approx 0.873 \mathrm{~kg} \end{aligned}$	M1 A1 M1 A1 B1 M1 A1 [7]	With no working shown allow only correct answers. Find Σx for $n=20$. C.a.o. Find Σx^{2} for $n=20$. C.a.o. Allow M1A0 for either 25.19 or 31.19 seen, i.e. for use of unbiased sd provided used consistently later. С.a.o. Use of correct formula for standard deviation; may be implied. C.a.o. Allow M1A0 for unbiased sd (0.8715...) provided used consistently earlier.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	$\mathbf{0 3}$

\begin{tabular}{|c|c|c|c|}
\hline (ii) \& \[
\begin{aligned}
\& y=65+25 x \\
\& \bar{y}=65+25 \times 0.72=83 \\
\& s_{y}=25 \times 0.873=21.825
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
[4]
\end{tabular} \& \begin{tabular}{l}
\(y=\) total payment, \(x=\) goals scored. \\
ft c 's mean in (i). \\
ft c 's sd in (i). \\
Accept 21.80 or \(21.82-21.83\), i.e. to nearest penny or better.
\end{tabular} \\
\hline \multirow[t]{7}{*}{\(\begin{array}{lll}4 \& \text { (i) } \& \text { (a) } \\ \& \& \text { (b) } \\ \& \\ \text { (c) }\end{array}\)} \& \[
\begin{aligned}
\& X \sim \mathrm{~B}(10,0.2) \\
\& \mathrm{P}(X \leqslant 3)=0.8791
\end{aligned}
\] \& \[
{ }^{\mathrm{B} 1}{ }_{[1]}
\] \& \\
\hline \& \[
\begin{aligned}
\mathrm{P}(X=3) \& =0.8791-0.6778 \\
\& =0.2013
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} \& Use of tables for \(\mathrm{P}(X \leqslant 3)-\mathrm{P}(X \leqslant 2)\) or formula for \(\mathrm{P}(X=3)\). C.a.o. \\
\hline \& \[
\begin{aligned}
\mathrm{P}(X \geqslant 1) \& =1-0.1074 \\
\& =0.8926
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} \& \begin{tabular}{l}
Attempt \(1-\mathrm{P}(X \leqslant 0)\) using tables or formula for \(\mathrm{P}(X=0)\). \\
С.a.o
\end{tabular} \\
\hline \& \[
\begin{aligned}
\& X \sim \mathrm{~B}(n, 0.2) \\
\& \text { Require } \mathrm{P}(X \geqslant 1) \geqslant 0.95 \\
\& \text { i.e. require } n \text { s.t. } \mathrm{P}(X \geqslant 1)=1-0.8^{n} \geqslant 0.95 \\
\& \quad \text { or s.t. } 0.8^{n} \leqslant 0.05
\end{aligned}
\] \& M1 \& \\
\hline \& ALT version1, by trial and error:
\[
\begin{aligned}
\text { If } n \& =13, \mathrm{P}(X \geqslant 1)=1-0.0549 \ldots=0.9450 \ldots \\
\& <0.95
\end{aligned}
\] \& A1 \& Either trial: \(n=13\) or 14 . The outcome of the trial must be shown explicitly. \\
\hline \& \[
\begin{aligned}
\& \text { If } n=14, \mathrm{P}(X \geqslant 1)=1-0.0439 \ldots=0.9570 \ldots \\
\& \quad>0.95 \\
\& \therefore n=14
\end{aligned}
\] \& A1

$\quad[3]$ \& Both trials shown explicitly and the conclusion stated.

\hline \& ALT version 2, by logs:

$$
n \log 0.8 \leqslant \log 0.05
$$

\[
\therefore n \geqslant \frac{\log 0.05}{\log 0.8}=\frac{-1.3010}{-0.0969} or \frac{-2.9957}{-0.2231}=13.425

\] \& | A1 |
| :--- |
| A1 | \& | Takes logs, any base, and make n the subject. |
| :--- |
| Correct value and conclusion. |

\hline
\end{tabular}

5	$\frac{8!}{2!2!}(=10080)$ ALT version 1: $\begin{aligned} & \frac{6!}{2!} \times{ }^{7} C_{2}(=360 \times 21=7560) \\ & p=\frac{6!/(2!) \times{ }^{7} C_{2}}{8!/(2!2!)} \\ & =\frac{3}{4} \end{aligned}$ ALT version 2: $\begin{aligned} & \frac{7!}{2!}(=2520) \\ & p=1-\frac{7!/(2!)}{8!/(2!2!)} \\ & =\frac{3}{4} \end{aligned}$	B1 B1 M1 A1 [4] B1 M1 A1	Arrangements of SEPARATE. Arrangements of SEPRTE and place As apart. Ratio of attempts at relevant expressions. C.a.o. Arrangements with As together. 1 - ratio of attempts at relevant expressions. C.a.o.
6	$\mathrm{P}(B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}$ Either $\mathrm{P}\left(A^{\prime} \cap B\right)=\mathrm{P}\left(A^{\prime}\right) \times \mathrm{P}(B)=\frac{1}{4} \times \frac{1}{3}=\frac{1}{12}$ Or $\mathrm{P}\left(A^{\prime} \cap B\right)=\mathrm{P}(B)-\mathrm{P}(A \cap B)=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$ Either $\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=\mathrm{P}\left(A^{\prime}\right) \times \mathrm{P}\left(B^{\prime}\right)=\frac{1}{4} \times \frac{2}{3}=\frac{1}{6}$ Or $\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=1-\mathrm{P}(A \cup B)=1-\left(\frac{3}{4}+\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{6}$ Or $\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=\mathrm{P}\left(A^{\prime}\right)-\mathrm{P}\left(A^{\prime} \cap B\right)=\frac{1}{4}-\frac{1}{12}=\frac{1}{6}$	B1 M1 A1 M1 A1 [5]	Using independence of A and B. Allow the use of a Venn diagram or a tree diagram. Product using independence or partition of B. C.a.o. Product of complements or complement of union or partition of A^{\prime}. C.a.o.
7	$\begin{aligned} & 15 a=-\mathrm{F} \\ & F=\mu N=0.017 \times 15 \times 10(=2.55) \\ & \therefore a=-0.017 \times 10=-0.17\left(\mathrm{~ms}^{-2}\right) \\ & 0^{2}=4^{2}-2 \times 0.17 \times s \\ & \therefore s=\frac{16}{2 \times 0.17}=47.058 \ldots \approx 47.1(\mathrm{~m}) \end{aligned}$	M1 B1 A1 M1 A1 [5]	N 2 applied. Limiting friction and $N=m g$. C.a.o. Use of appropriate 'suvat' equation. Ft c's a.
8 (i)	At max height $v_{y}=0$ i.e. $U \sin \theta-10 t=0$	M1	Use of condition for max height.

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 4}$	03

(ii)	$\begin{aligned} & \therefore U \times \frac{12}{13}-10 \times 2.4=0 \\ & \therefore U=26\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ Max $y=U t \sin \theta-\frac{1}{2} g t^{2}$ $\begin{aligned} & y=26 \times 2.4 \times \frac{12}{13}-5 \times 2.4^{2} \\ & \therefore y=28.8(\mathrm{~m}) \end{aligned}$ $\cos \theta=\frac{5}{13}$ ALT version 1: At horizontal range $t=4.8$ (sec) $R=U t \cos \theta$ $\begin{aligned} & \therefore R=26 \times 4.8 \times \frac{5}{13} \\ & \therefore R=48(\mathrm{~m}) \end{aligned}$ ALT version 2: $\begin{aligned} & \sin 2 \theta=2 \sin \theta \cos \theta=2 \times \frac{12}{13} \times \frac{5}{13} \\ & \therefore R=\frac{U^{2}}{g} \sin 2 \theta \\ & \therefore R=\frac{26^{2}}{10} \times \frac{2 \times 12 \times 5}{13^{2}} \\ & \therefore R=48(\mathrm{~m}) \end{aligned}$	B1 M1 A1 [4] B1 M1 A1	Allow M1A0 for \sin / cos error here only; but absence is M0. C.a.o. Use of formula for y. Ft c's U. Use of formula for x Ft c's U. Use of formula for R. Ft c's U.
9 (i) (ii)	$\begin{aligned} & 0^{2}=165^{2}+2 \times a \times 1237.5 \\ & \therefore a=-11\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \\ & 0.01 \times(-11)=-0.01 \times 10-R \\ & \therefore R=0.01(\mathrm{~N}) \\ & 0.01 \times a=0.01 \times 10-0.01 \\ & \therefore a=9\left(\mathrm{~ms}^{-2}\right) \\ & 1237.5=0+\frac{9}{2} t^{2} \\ & \therefore t=\sqrt{275}=16.583 \ldots \approx 16.6(\mathrm{~s}) \end{aligned}$	M1 A1 M1 A1 [4] M1 A1 M1 A1 [4]	Use of appropriate 'suvat' equation. Correct outcome. Must be either negative or suitably qualified. Use of N2; signs correct. Ft c's a provided it is negative. Use of N2; signs adjusted correctly. Ft c's R. Depends on the previous M mark. Use of appropriate 'suvat' equation. Correct outcome. C.a.o.

