Cambridge International Examinations

Cambridge Pre-U Certificate

MATHEMATICS

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question	Answer	Marks
1(i)	State (3, 2)	B1
1(ii)	Substitute (0,2) to find diameter.	M1
	Obtain 6.	A1
2(i)	Apply correctly at least one logarithm law.	M1
	Obtain $\log 6$	A1
2(ii)	Apply the power law correctly at least once	M1*
	Correctly combine log terms	depM1
	Obtain $\log \left(\frac{x^{2} z^{2}}{y^{3}}\right)$	A1
3(i)	Use $a^{2}=b^{2}+c^{2}-2 b c \cos A$ but data may be in wrong position	M1
	Obtain $8^{2}=7^{2}+6^{2}-2(7)(6) \cos A B C$ or equivalent	A1
	Derive correctly $\cos A B C=0.25 \mathrm{AG}$	A1
3(ii)	State $\frac{1}{2} a b \sin C$ for the area of a triangle	M1
	Obtain correctly $\sin A B C$ (may be via angle $A B C$ ($=75.5^{\circ}$) or an identity)	M1
	Obtain answers rounding to $20.3\left(\mathrm{~cm}^{2}\right)$	A1
	Alternative Use cosine rule to find another angle (angle $A=46.567$, angle $C=57.91$)	M1
	Find height of triangle (5.083)	M1
	Use 0.5 (base)(height) $=20.3$	A1
4	Use of the identity $\sin 2 x=2 \sin x \cos x$	B1
	Obtain $\sin x=\frac{\sqrt{3}}{2}$	B1
	Obtain 60° and 120°	B1
	Obtain 90° and 270°	B1

Question	Answer				Marks
5	Attempt to square and expand brackets with 3 terms resulting from each.				M1
	Obtain $x^{2}-2 \sqrt{3} x+3$				A1
	Obtain $x^{2}+4 \sqrt{3} x+12$				A1
	Rearrange to make x the subject.				M1
	$x>\frac{-\sqrt{3}}{2}$ aef.				A1
	Alternative 1 : an approach based on a piecewise function Consider at least two intervals $\begin{aligned} & -(x-\sqrt{3})--(x+2 \sqrt{3})<0 \\ & -(x-\sqrt{3})-(x+2 \sqrt{3)}<0 \\ & (x-\sqrt{3})-(x+2 \sqrt{3})>0 \end{aligned}$				M1
	Specify the intervals $(-\infty,-2 \sqrt{3}),(-2 \sqrt{3}, \sqrt{3}),(\sqrt{3}, \infty)$				A1
	Discard the first and last intervals, may be without comment				M1
	Solve $-(x-\sqrt{3})-(x+2 \sqrt{3})<0$ or equiv				M1
	$x>\frac{-\sqrt{3}}{2}$ with no incorrect working. Extra intervals M1M0M1 only				A1
	Alternative 2: an approach based on graphs only				
	$y=\|x-\sqrt{3}\|$ drawn with intersections with axes shown				M1A1
	$y=\|x+2 \sqrt{3}\|$ drawn with intersections with axes shown				M1A1
	$x>\frac{-\sqrt{3}}{2}$				A1

Question	Answer	Marks
7(iii)	State derivative is $\frac{1}{1+x}+1$	B1
	Use $x_{\mathrm{n}+1}=x_{\mathrm{n}}-\frac{\ln \left(1+x_{n}\right)-4+x_{n}}{\frac{1}{1+x_{n}}+1}$	M1
	Obtain at least $x_{1}=2.676$	A1
	State 2.693 explicitly	A1
	Alternative Using function $\mathrm{f}(x)=\mathrm{e}^{4-x}-x-1$. Derivative $=-\mathrm{e}^{4-x}-1$ with $x_{1}=2.523$ then 2.693	4
8	$\text { Obtain } 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+12 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1
	Obtain $-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 x+2$	B1
	Substitute $(1,1)$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as long as valid implicit differentiation used	M1
	Use $m_{1} m_{2}=-1$	M1
	$\text { Obtain } \frac{-13}{8}$	A1
	Use $(y-1)=m(x-1)$	M1
	Obtain $8 y+13 x-21=0$	A1
	Unclear notation used or apparent slips in working but otherwise correct. Award final A0	

Question	Answer	Marks
9	State $z=2$ as a root either from the factor theorem or in a list of all 3 roots, No working required. ($8+12-20=0$ seen with no indication of $z=2$ as a root B0 " $z-2$ is a root" or " $z=2$ is a factor" B 0 even if $z=2$ listed as a root later. If factors only ever seen B 0 and later A 0 also.	B1
	Attempt long division to obtain a quadratic factor. Substituting $z=a+\mathrm{i} b$ must end with correct expressions, e.g. $-8 a^{3}-12 a-20=0$ and $2 a^{3}+3 a+5=0$	M1
	Obtain $z^{2}+2 z+10$	A1
	Use quadratic formula to solve their quadratic	M1
	Obtain $-1+3 \mathrm{i}$ and $-1-3 \mathrm{i}$	A1
	State $-1+3 \mathrm{i}$ has modulus $\sqrt{10}$ and argument 1.89 or 108° [Allow arguments between 0 and 2π] Do not accept arguments given in final form as $\tan ^{-1}(-3)$ or $\tan ^{-1}(+3)$	B1
	State - $1-3 \mathrm{i}$ has modulus $\sqrt{10}$ and argument -1.89 or 4.39 or -108° or 252°	B1
	State 2 has modulus 2 and argument 0	B1
	Three correct points shown on an Argand diagram. Do not accept a plainly Cartesian graph. If no labels, then must indicate the points as complex numbers, even as $z_{1} z_{2}$ as long as clear from a list of roots. Accept a cross or similar for 2	B1
10	Rearrange to obtain $x^{2}=9-3 y$ and $x^{2}=9-5 y$	B1
	Use their $(\pi) \int x^{2}(\mathrm{~d} y)$ on separate integrals	M1
	$\text { Obtain } 9 y-\frac{3}{2} y^{2} \text { and } 9 y-\frac{5}{2} y^{2}$	A1
	Use limits (3,0) and ($1.8,0)$ on separate integrals in correct order	M1
	Obtain 13.5π and 8.1π	A1
	Subtract separate volumes in correct order	M1
	Obtain $\frac{27 \pi}{5}$ or equiv (16.96 or 5.4π)	A1

Question	Answer	Marks
10	Alternative method Form a single integral by subtraction $y=\frac{1}{3}\left(9-x^{2}\right)-\frac{1}{5}\left(9-x^{2}\right)=\frac{2}{15}\left(9-x^{2}\right)$	M1A1
	Rearrange to x^{2} form ($x^{2}=9-\frac{15 y}{2}$)	M1
	Use (π) $\int x^{2} \mathrm{~d} y$	M1
	$\text { Obtain } 9 y-\frac{15}{4} y^{2}$	A1
	Use limits ($1.2,0$) on a single integral in correct order	M1
	$\text { Obtain } \frac{27 \pi}{5}$	A1
	Special Ruling	
	Rotation about the x-axis : State $\pi \int_{0}^{3} \frac{1}{9}\left(9-x^{2}\right)^{2} \mathrm{~d} x-\pi \int_{0}^{3} \frac{1}{25}\left(9-x^{2}\right)^{2} \mathrm{~d} x=\mathrm{B} 1$ and final answer 28.95 B2	
11(i)	State $\overrightarrow{O Q}=6 \mathbf{i}-4 \mathbf{j}-\mathbf{2 k}$ and $\overrightarrow{O P}=6 \mathbf{i}+3 \mathbf{j}-\mathbf{9 k}$ or $A Q=4 \mathbf{i}-5 \mathbf{j}+\mathbf{k}$ and $B P=3 \mathbf{i}+5 \mathbf{j}-8 \mathbf{k}$.	B1
	Form equation of line $A Q$ and $B P$ in form $\mathbf{a}+\lambda \mathbf{b}$	M1
	Obtain $\mathbf{r}_{A Q}=(2 \mathbf{i}+\mathbf{j}-\mathbf{3 k})+\lambda(4 \mathbf{i}-5 \mathbf{j}+\mathbf{k})$ Could use OQ so $\mathbf{r}_{O Q}=(6 \mathbf{i}-4 \mathbf{j}-\mathbf{2 k})+\lambda(4 \mathbf{i}-5 \mathbf{j}+\mathbf{k})$ giving $\mu=\frac{1}{5}$ or $\lambda=\frac{-3}{5}$ OR OQ and $\mathrm{OP}=(6 \mathbf{i}+3 \mathbf{j}-\mathbf{9} \mathbf{k})+\lambda(3 \mathbf{i}+5 \mathbf{j}-\mathbf{8 k})$ giving $\mu=\frac{-4}{5}$ or $\lambda=\frac{-3}{5}$ OR AQ and BP $(2 \mathbf{i}+\mathbf{j}-\mathbf{3 k})+\lambda(4 \mathbf{i}-5 \mathbf{j}+\mathbf{k})$ and $(6 \mathbf{i}+3 \mathbf{j}-\mathbf{9 k})+\lambda(3 \mathbf{i}+5 \mathbf{j}-\mathbf{8 k})$ giving $\mu=\frac{-4}{5}$ or $\lambda=\frac{2}{5}$	A1
	Obtain $\mathbf{r}_{B P}=(3 \mathbf{i}-2 \mathbf{j}-\mathbf{k})+\mu(3 \mathbf{i}+5 \mathbf{j}-8 \mathbf{k})$	A1
	Equate line equations and solve two eqns simultaneously to find some value of λ or μ	M1
	$\text { Obtain either } \mu=\frac{1}{5} \text { or } \lambda=\frac{2}{5}$	A1
	State $\left(\frac{18}{5},-1, \frac{-13}{5}\right)$ Must be in coordinate form	B1

Question	Answer	Marks
11(i)	ALTERNATIVE	
	$\overrightarrow{O Q}=6 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k}$ and $\overrightarrow{O P}=6 \mathbf{i}+3 \mathbf{j}-9 \mathbf{k}$	B1
	$\mathbf{A Q}$ and $\mathbf{B P}$ intersect at M Then $\mathbf{O M}=\mathbf{O A}+\mathbf{A M}=\mathbf{O B}+\mathbf{B M}$	M1
	$=\mathbf{a}+\lambda \mathbf{A Q}=\mathbf{a}+\lambda(-\mathbf{a}+2 \mathbf{b})$	A1
	$=\mathbf{b}+\mu \mathbf{B P}=\mathbf{b}+\mu(-\mathbf{b}+3 \mathbf{a})$	A1
	$(1-\lambda) \mathbf{a}+2 \lambda \mathbf{b}=(1-\mu) \mathbf{b}+3 \mu \mathbf{a}$	M1
	$\text { Obtain either } \mu=\frac{1}{5} \text { or } \lambda=\frac{2}{5}$	A1
	State $\left(\frac{18}{5},-1, \frac{-13}{5}\right)$ Must be in coordinate form	B1
11(ii)	Use dot product correctly to find an angle	M1
	Obtain either $\|\overrightarrow{A Q}\|=\sqrt{42}$ or $\|\overrightarrow{B P}\|=\sqrt{98}$	B1
	Obtain 70.9°	A1
12	$\text { State } P=\frac{ \pm k}{V}$	B1
	Find k by substituting $P=5$ and $V=80$	M1
	$P=\frac{400}{V}$ May be implied by correct working or $k=400$	A1
	Differentiate a correct expression for $P: \frac{\mathrm{d} P}{\mathrm{~d} V}=\frac{-400}{V^{2}}$	M1
	State $\frac{\mathrm{d} V}{\mathrm{~d} t}=10$ or implied by use in $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{\mathrm{d} P}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}$	B1
	Use $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{\mathrm{d} P}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}$ to obtain an expression in V $\left(\mathrm{OR} \frac{\mathrm{dV}}{\mathrm{dP}}=\frac{\mathrm{dV}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dP}}\right.$ giving $\frac{-400}{P^{2}}=10 \times \frac{\mathrm{dt}}{\mathrm{dP}}$ to obtain an expression in $P \mathrm{M} 1$ and substitute $P=5$ for M1)	M1
	Substitute $V=80$ into correct $\frac{\mathrm{d} P}{\mathrm{~d} V}=\frac{-400}{V^{2}}$	M1
	Obtain 0.625 (pascals)	A1

Question	Answer	Marks
12	Alternative	
	State $P=\frac{ \pm k}{V}$	B1
	Find k by substituting $P=5$ and $V=80$	M1
	$P=\frac{400}{V}$ May be implied by correct working or $k=400$	A1
	$\begin{aligned} & V=\int 10 \mathrm{~d} t \Rightarrow V=10 t+c \\ & \text { At } t=0, V=80 \text { so } V=10 t+80 \end{aligned}$	B1
	$\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{-400 \times 10}{(10 t+80)^{2}} \text { or } \frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{-40}{(t+8)^{2}}$	M1M1
	$\text { At } t=0 \frac{\mathrm{~d} P}{\mathrm{~d} t}=-0.625$	A1
	Final answer 0.625	A1

