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Question Answer Marks 

1(i)  State (3, 2) B1

1(ii) Substitute (0, 2) to find diameter.  M1

 Obtain 6. A1

2(i) Apply correctly at least one logarithm law. M1

 Obtain log 6 A1

2(ii) Apply the power law correctly at least once M1*

 Correctly combine log terms depM1

 
Obtain log 

2 2

3
x z
y

 
 
 

  
A1

3(i) Use 2 2 2 2 cos= + −a b c bc A  but data may be in wrong position M1

 Obtain 82 = 72 + 62 – 2(7)(6)cos ABC or equivalent A1

 
 

Derive correctly cos ABC = 0.25 AG  A1

3(ii) 
State 1 sin

2
ab C  for the area of a triangle 

M1

 Obtain correctly sin ABC (may be via angle ABC (= 75.5°) or an identity) M1

 Obtain answers rounding to 20.3 (cm2) A1

 Alternative 

 Use cosine rule to find another angle (angle A = 46.567, angle C = 57.91) M1

 Find height of triangle (5.083) M1

 Use 0.5(base)(height) = 20.3 A1

4 Use of the identity sin 2x = 2 sinx cos x B1

 
Obtain sin x = 

3
2

 
B1

 Obtain 60° and 120° B1

 Obtain 90° and 270° B1
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Question Answer Marks 

5 Attempt to square and expand brackets with 3 terms resulting from each. M1

 Obtain x2 − 2 3 x + 3  A1

 Obtain x2 + 4 3 x + 12 A1

 Rearrange to make x the subject. M1

 
 

3
2

−
>x  aef.  

A1

 Alternative 1 : an approach based on a piecewise function 

 Consider at least two intervals 
( 3) ( 2 3) 0

( 3) ( 2 3) 0

( 3) ( 2 3) 0

− − − − + <

− − − + <

− − + >

x x

x x

x x

 

M1

 Specify the intervals ( , 2 3),( 2 3, 3),( 3, )−∞ − − ∞  A1

 Discard the first and last intervals, may be without comment M1

 Solve ( 3) ( 2 3) 0− − − + <x x or equiv M1

 3
2

−
>x with no incorrect working. Extra intervals M1M0M1 only 

A1

 Alternative 2 : an approach based on graphs only 

 

 

 | 3| drawn= −y x with intersections with axes shown M1A1

 | 2 3| drawn= +y x  with intersections with axes shown M1A1

 3
2

−
>x  

A1

−6 −4 −2 2 4 6

−4

−3

−2

−1

1

2

3

4

x

y
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Question Answer Marks 

6(i) 

Attempt 1 + 1
2

x + 2 3

1 1 1 1 3
2 2 2 2 2

2 6
x x

− − −      
      
      +  

(allow omission of brackets at this stage) but must reach the x3 term 

M1

 
Obtain 1 + 1

2
x   

A1

 
 Obtain 21

8
− x   

A1

 
Obtain 31

16
x   

A1

6(ii) Attempt sum of two relevant terms Must see the sum of two terms only each giving an 
x3 result 

M1

 
Obtain 1

8 8
−

k = 1 
A1

 Obtain k = − 7 A1

7(i) State translation – NOT “shift” or “move” B1

 … one unit to the left  
OR in the negative direction OR to the left by 1  

OR 1 unit parallel to the x axis OR by specifying the vector 
1

0
− 
 
 

. 

B1

 Stating “in”  
OR “on ” 
OR “along” the x-axis”  
OR “a factor of –1” B0 

7(ii) Sketch ln graph with asymptote at x = − 1 clearly indicated. B1

 Sketch correct y = 4 – x to show intersection points with the axes clearly. B1

 

 

 State one intersection implies one root. B1*

–6 –4 –2 2 4 6

–4

–3

–2

–1

1

2

3

4

x

y
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7(iii) 
State derivative is 1 1

1
+

+ x
 

B1

 
Use xn+1 = xn − 

ln(1 ) 4
1 1

1

+ − +

+
+

n n

n

x x

x

 
M1

 Obtain at least x1 = 2.676  A1

 State 2.693 explicitly  A1

 Alternative 4

 Using function f(x) = e4–x − x− 1. Derivative = − e4–x – 1 with x1 = 2.523 then 2.693 

8 
Obtain 3y2 d

d
y
x

+ 12y d
d

y
x

 
B1

 
Obtain d2 6 2

d
− = +

y x
x

 
B1

 
Substitute (1, 1) into their d

d
y
x

as long as valid implicit differentiation used 
M1

 Use m1m2 = −1 M1

 
Obtain 13

8
−  

A1

 Use (y – 1) = m(x – 1) M1

 Obtain 8y + 13x – 21 = 0 A1

 Unclear notation used or apparent slips in working but otherwise correct. Award final 
A0 



9794/01 Cambridge Pre-U – Mark Scheme 
PUBLISHED 

May/June 2017

 

© UCLES 2017 Page 6 of 9 
 

Question Answer Marks 

9 State z = 2 as a root either from the factor theorem or in a list of all 3 roots, No working 
required. 
 ( 8 + 12 – 20 = 0 seen with no indication of z = 2 as a root B0 
 “ z − 2 is a root” or “z = 2 is a factor” B0 even if z = 2 listed as a root later. 
 If factors only ever seen B0 and later A0 also. 

B1

 Attempt long division to obtain a quadratic factor. 
 Substituting z = a + ib must end with correct expressions, e.g.  −8a3 – 12a – 20 = 0 and 
2a3 + 3a + 5 = 0 

M1

 Obtain z2 + 2z + 10 A1

 Use quadratic formula to solve their quadratic M1

 Obtain –1 + 3i and –1 − 3i A1

 State –1 + 3i has modulus 10  and argument 1.89 or 108° [Allow arguments between 
0 and 2π] 
Do not accept arguments given in final form as tan−1(−3) or tan−1(+3) 

B1

 State – 1 − 3i has modulus 10  and argument −1.89 or 4.39 or −108° or 252° B1

 State 2 has modulus 2 and argument 0 B1

 Three correct points shown on an Argand diagram. Do not accept a plainly Cartesian 
graph. If no labels, then must indicate the points as complex numbers, even as z1 z2 as 
long as clear from a list of roots. 
Accept a cross or similar for 2 

B1

10 Rearrange to obtain 2 29 3  and 9 5= − = −x y x y  B1

 Use their (π) 2 (d )∫ x y  on separate integrals M1

 
Obtain 9y − 3

2
y2 and 9y − 5

2
y2 

A1

 Use limits (3, 0) and (1.8, 0) on separate integrals in correct order M1

 Obtain 13.5π and 8.1π A1

 Subtract separate volumes in correct order M1

 
Obtain 27

5
π or equiv (16.96 or 5.4π) 

A1
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10 Alternative method 

 
Form a single integral by subtraction 2 2 21 1 2(9 ) (9 ) (9 )

3 5 15
= − − − = −y x x x  

M1A1

 
Rearrange to x2 form ( 2 159

2
= −

yx ) 
 M1

 

  Use (π) 2d∫ x y  M1

 
Obtain 2159

4
−y y  

A1

 Use limits (1.2, 0) on a single integral in correct order M1

 
Obtain 27

5
π  

A1

 Special Ruling 

 
Rotation about the x-axis : State 

3 3
2 2 2 2

0 0

1 1(9 ) d (9 ) d
9 25

x x x xπ π− − −∫ ∫  = B1 and final 

answer 28.95 B2 

11(i) State OQ
uuur

= 6i – 4j – 2k and OP
uuur

= 6i + 3j – 9k  
or AQ = 4i − 5j + k and BP = 3i + 5j − 8k. 

B1

 Form equation of line AQ and BP in form a + λb M1

 Obtain rAQ = (2i + j – 3k) + λ(4i – 5j + k) 
 

Could use OQ so rOQ = (6i − 4 j – 2k) + λ(4i – 5j + k) giving µ = 1
5

 or λ= 3
5
−  

OR OQ and OP = (6i + 3j – 9k) + λ(3i + 5j − 8k) giving µ = 4
5
−  or λ= 3

5
−  

OR AQ and BP (2i + j – 3k) + λ(4i – 5j + k) and (6i + 3j – 9k) + λ(3i + 5j − 8k) giving 

µ = 4
5
−  or λ= 2

5
 

A1

 Obtain rBP = (3i − 2j − k) + µ(3i + 5j – 8k)  A1

 Equate line equations and solve two eqns simultaneously to find some value of λ or µ M1

 
Obtain either µ = 1

5
or λ = 2

5
 

A1

 
State 18 13, 1,

5 5
− − 

 
 Must be in coordinate form 

B1
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11(i) ALTERNATIVE 

 OQ
uuur

= 6i – 4j – 2k and OP
uuur

= 6i + 3j – 9k 
 

B1

 AQ and BP intersect at M 
Then OM = OA + AM = OB + BM 

M1

  = a + λAQ = a + λ(− a+2b) A1

  = b + µBP = b + µ(− b + 3a) A1

 (1 – λ)a + 2λb = (1− µ)b + 3µa M1

 
Obtain either µ = 1

5
or λ = 2

5
 

A1

 
State 18 13, 1,

5 5
− − 

 
 Must be in coordinate form 

B1

11(ii) Use dot product correctly to find an angle  M1

 Obtain either | |AQ
uuur

 = 42 or | |BP
uuur

= 98  B1

 Obtain 70.9° A1

12 
State P = ±k

V
  

B1

 Find k by substituting P = 5 and V = 80 M1

 
P = 400

V
  May be implied by correct working or k = 400 

A1

 
Differentiate a correct expression for P: 2

d 400
d

−
=

P
V V

 
M1

 
State d 10

d
=

V
t

 or implied by use in d d d
d d d

= ×
P P V
t V t

 
B1

 
Use d d d

d d d
= ×

P P V
t V t

to obtain an expression in V  

(OR dV dV dt
dP dt dP

= × giving 2
400 dt10

dP
−

= ×
P

to obtain an expression in P M1 and 

substitute P = 5 for M1) 

M1

 
Substitute V = 80 into correct 2

d 400
d

−
=

P
V V

 
M1

 Obtain 0.625 (pascals)  A1
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12 Alternative 

 
State P = ±k

V
  

B1

 Find k by substituting P = 5 and V = 80 M1

 
P = 400

V
  May be implied by correct working or k = 400 

A1

 10d 10

At 0, 80 so 10 80

V t V t c

t V V t

= ⇒ = +

= = = +
∫  

B1

 
 2
d 400 10
d (10 80)

− ×
=

+
P
t t

 or 2
d 40
d ( 8)

−
=

+
P
t t

  
M1M1

 
At t = 0 d 0.625

d
= −

P
t

 
A1

 Final answer 0.625 A1

 


